Abstract

We present a painless, almost-free upgrade to present extended-cavity diode lasers (ECDLs) that improves the long-term mode-hop-free performance by stabilizing the resonance of the internal cavity to the external cavity. This stabilization is based on the observation that the frequency or amplitude noise of the ECDL is lowest at the optimum laser diode temperature or injection current. Thus, keeping the diode current at the level where the noise is lowest ensures mode-hop-free operation within one of the stable regions of the mode chart, even if these should drift due to external influences. This method can be applied directly to existing laser systems without modifying the optical setup. We demonstrate the method in two ECDLs stabilized to vapor cells at 852 and 895 nm wavelengths. We achieve long-term mode-hop-free operation and low noise at low power consumption, even with an inexpensive non-antireflection-coated diode.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C. E. Wieman and L. Hollberg, "Using diode lasers for atomic physics," Rev. Sci. Instrum. 62, 1-20 (1991).
    [CrossRef]
  2. K. R. Preston, K. C. Woollard, and K. H. Cameron, "External cavity controlled single longitudinal mode laser transmitter module," Electron. Lett. 17, 931-933 (1981).
    [CrossRef]
  3. M. de Labachelerie, C. Latrasse, P. Kemssu, and P. Cerez, "The frequency control of laser diodes," J. Phys. III 2, 1557-1589 (1992).
  4. A. S. Arnold, J. S. Wilson, and M. G. Boshier, "Simple extended-cavity diode laser," Rev. Sci. Instrum. 69, 1236-1239 (1998).
    [CrossRef]
  5. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, "Compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
    [CrossRef]
  6. W. R. Trutna and P. Zorabedian, "Research on external-cavity lasers," Hewlett-Packard J. 44, 35-38 (1993).
  7. Technical Note No. 4. "Classification of antireflection coatings for diode lasers," (Sacher Lasertechnik, Marburg, Germany), http://data.sacher-laser.com/techdocs/classes.pdf.
  8. F. Allard, I. Maksimovic, M. Abgrall, and P. Laurent, "Automatic system to control the operation of an extended cavity diode laser," Rev. Sci. Instrum. 75, 54-58 (2004).
    [CrossRef]
  9. F. Favre, D. Le Guen, J. C. Simon, and B. Landousies, "External-cavity semiconductor laser with 15 nm continuous tuning range," Electron . Lett. 21, 795-796 (1986).
  10. M. de Labachelerie and G. Passedat, "Mode-hop suppression of Littrow grating-tuned lasers," Appl. Opt. 32, 269-274 (1993).
    [CrossRef] [PubMed]
  11. D. J. Lonsdale, D. A. Andrews, and T. A. King, "Single mode operation and extended scanning of anti-reflection coated visible laser diodes in a Littrow cavity," Meas. Sci. Technol. 15, 933-938 (2004).
    [CrossRef]
  12. C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, "Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating," Rev. Sci. Instrum. 72, 3811-3815 (2001).
    [CrossRef]
  13. J. Hult, I. S. Burns, and C. F. Kaminski, "Wide-bandwidth mode-hop-free tuning of extended-cavity GaN diode lasers," Appl. Opt. 44, 3675-3685 (2005).
    [CrossRef] [PubMed]
  14. L. Menager, L. Cabaret, I. Lorgere, and J. L. Le Gouet, "Diode laser extended cavity for broad-range fast ramping," Opt. Lett. 25, 1246-1248 (2000).
    [CrossRef]
  15. K. Y. Liou, C. A. Burrus, and F. Bosch, "Graded-index-rod external coupled-cavity laser with backface output-monitor-stabilized single-frequency operation," J. Lightwave Technol. LT-3, 985-987 (1985).
    [CrossRef]
  16. D. T. Cassidy and L. J. Bonnell, "Trace gas detection with short-external-cavity InGaAsP diode laser transmitter modules operating at 1.58 μm," Appl. Opt. 27, 2688-2693 (1988).
    [CrossRef] [PubMed]
  17. B. F. Ventrudo and D. T. Cassidy, "Interference fringes in the far field of short-external-cavity InGaAsP diode lasers: a method for longitudinal mode control," Appl. Opt. 32, 6620-6627 (1993).
    [CrossRef] [PubMed]
  18. H. Müller, S. Herrmann, T. Schuldt, M. Scholz, E. Kovalchuk, and A. Peters, "Offset compensation by use of amplitude-modulated sidebands in optical frequency standards," Opt. Lett. 21, 2186-2188 (2003).
    [CrossRef]
  19. H. Müller, S. Herrmann, C. Braxmaier, S. Schiller, and A. Peters, "Precision test of the isotropy of light propagation," Appl. Phys. B 77, 719-731 (2003).
    [CrossRef]
  20. H. Burkart, "Optische Sender: Grundlagen," in Optische Kommunikationstechnik, E. Voges and K. Petermann, eds. (Springer, 2002).
  21. S. Hansmann, "Laser dioden," in Optische Kommunikations-technik, E. Voges and K. Petermann, eds. (Springer, 2002).
  22. J. H. Shirley, "Modulation transfer processes in optical heterodyne saturation spectroscopy," Opt. Lett. 7, 537-539 (1982).
    [CrossRef] [PubMed]
  23. K. G. Libbrecht and J. L. Hall, "Low-noise high-speed diode laser current controller," Rev. Sci. Instrum. 64, 2133-2135 (1993).
    [CrossRef]

2005

2004

D. J. Lonsdale, D. A. Andrews, and T. A. King, "Single mode operation and extended scanning of anti-reflection coated visible laser diodes in a Littrow cavity," Meas. Sci. Technol. 15, 933-938 (2004).
[CrossRef]

F. Allard, I. Maksimovic, M. Abgrall, and P. Laurent, "Automatic system to control the operation of an extended cavity diode laser," Rev. Sci. Instrum. 75, 54-58 (2004).
[CrossRef]

2003

H. Müller, S. Herrmann, T. Schuldt, M. Scholz, E. Kovalchuk, and A. Peters, "Offset compensation by use of amplitude-modulated sidebands in optical frequency standards," Opt. Lett. 21, 2186-2188 (2003).
[CrossRef]

H. Müller, S. Herrmann, C. Braxmaier, S. Schiller, and A. Peters, "Precision test of the isotropy of light propagation," Appl. Phys. B 77, 719-731 (2003).
[CrossRef]

2001

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, "Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating," Rev. Sci. Instrum. 72, 3811-3815 (2001).
[CrossRef]

2000

1998

A. S. Arnold, J. S. Wilson, and M. G. Boshier, "Simple extended-cavity diode laser," Rev. Sci. Instrum. 69, 1236-1239 (1998).
[CrossRef]

1995

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, "Compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

1993

1992

M. de Labachelerie, C. Latrasse, P. Kemssu, and P. Cerez, "The frequency control of laser diodes," J. Phys. III 2, 1557-1589 (1992).

1991

C. E. Wieman and L. Hollberg, "Using diode lasers for atomic physics," Rev. Sci. Instrum. 62, 1-20 (1991).
[CrossRef]

1988

1986

F. Favre, D. Le Guen, J. C. Simon, and B. Landousies, "External-cavity semiconductor laser with 15 nm continuous tuning range," Electron . Lett. 21, 795-796 (1986).

1985

K. Y. Liou, C. A. Burrus, and F. Bosch, "Graded-index-rod external coupled-cavity laser with backface output-monitor-stabilized single-frequency operation," J. Lightwave Technol. LT-3, 985-987 (1985).
[CrossRef]

1982

1981

K. R. Preston, K. C. Woollard, and K. H. Cameron, "External cavity controlled single longitudinal mode laser transmitter module," Electron. Lett. 17, 931-933 (1981).
[CrossRef]

Appl. Opt.

Appl. Phys. B

H. Müller, S. Herrmann, C. Braxmaier, S. Schiller, and A. Peters, "Precision test of the isotropy of light propagation," Appl. Phys. B 77, 719-731 (2003).
[CrossRef]

Electron

F. Favre, D. Le Guen, J. C. Simon, and B. Landousies, "External-cavity semiconductor laser with 15 nm continuous tuning range," Electron . Lett. 21, 795-796 (1986).

Electron. Lett.

K. R. Preston, K. C. Woollard, and K. H. Cameron, "External cavity controlled single longitudinal mode laser transmitter module," Electron. Lett. 17, 931-933 (1981).
[CrossRef]

Hewlett-Packard J.

W. R. Trutna and P. Zorabedian, "Research on external-cavity lasers," Hewlett-Packard J. 44, 35-38 (1993).

J. Lightwave Technol.

K. Y. Liou, C. A. Burrus, and F. Bosch, "Graded-index-rod external coupled-cavity laser with backface output-monitor-stabilized single-frequency operation," J. Lightwave Technol. LT-3, 985-987 (1985).
[CrossRef]

J. Phys. III

M. de Labachelerie, C. Latrasse, P. Kemssu, and P. Cerez, "The frequency control of laser diodes," J. Phys. III 2, 1557-1589 (1992).

Meas. Sci. Technol.

D. J. Lonsdale, D. A. Andrews, and T. A. King, "Single mode operation and extended scanning of anti-reflection coated visible laser diodes in a Littrow cavity," Meas. Sci. Technol. 15, 933-938 (2004).
[CrossRef]

Opt. Commun.

L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, and T. W. Hänsch, "Compact grating-stabilized diode laser system for atomic physics," Opt. Commun. 117, 541-549 (1995).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

F. Allard, I. Maksimovic, M. Abgrall, and P. Laurent, "Automatic system to control the operation of an extended cavity diode laser," Rev. Sci. Instrum. 75, 54-58 (2004).
[CrossRef]

K. G. Libbrecht and J. L. Hall, "Low-noise high-speed diode laser current controller," Rev. Sci. Instrum. 64, 2133-2135 (1993).
[CrossRef]

C. E. Wieman and L. Hollberg, "Using diode lasers for atomic physics," Rev. Sci. Instrum. 62, 1-20 (1991).
[CrossRef]

A. S. Arnold, J. S. Wilson, and M. G. Boshier, "Simple extended-cavity diode laser," Rev. Sci. Instrum. 69, 1236-1239 (1998).
[CrossRef]

C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, "Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating," Rev. Sci. Instrum. 72, 3811-3815 (2001).
[CrossRef]

Other

Technical Note No. 4. "Classification of antireflection coatings for diode lasers," (Sacher Lasertechnik, Marburg, Germany), http://data.sacher-laser.com/techdocs/classes.pdf.

H. Burkart, "Optische Sender: Grundlagen," in Optische Kommunikationstechnik, E. Voges and K. Petermann, eds. (Springer, 2002).

S. Hansmann, "Laser dioden," in Optische Kommunikations-technik, E. Voges and K. Petermann, eds. (Springer, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Color online) rms frequency noise (integrated from 40 to 100 kHz ) and the corresponding error signal versus injection current. Inset, noise spectra for three injection current settings.

Fig. 2
Fig. 2

(Color online) Schematic of a tracked ECDL. BS, beam splitter.

Fig. 3
Fig. 3

Mode chart of an ECDL for a fixed grating. Each graph represents a mode of the external cavity, labeled with the wavelength λ 894   nm at the center in picometers (λ changes by 6   pm in each mode). The 7 pm mode spacing ( 3   GHz ) matches well with the free spectral range of the external cavity length of 5 .5   cm . The graph on the far right-hand side corresponds to a different mode of the internal cavity ( 17   pm free spectral range).

Fig. 4
Fig. 4

(Color online) 48 h operation of the non-AR-coated laser.

Fig. 5
Fig. 5

Lock-in amplifier and servo circuit.

Fig. 6
Fig. 6

(Color online) 12 day operation of the AR-coated laser.

Equations (76)

Equations on this page are rendered with MathJax. Learn more.

ν L
ν i
T d
I d
ν L
ν L
ν e m
ν i
ν g
ν e m ν g ν i
ν L
ν e m
ν g
ν i
ν i
T d
ν g
ν i
ν e m
ν i
ν e m
I d
d P / d I d
T d
ν e m
ν e m
40  to  100   kHz
94.6 96.2   mA
I d
( 10   Hz )
ν L
ν i = ν e m
I d
T d
885 920   nm
40   mA
30   mW
895   nm
18 , 000 lines / cm
T d
I d
80   kHz
I d
300 MHz / mA )
( 10   Hz )
2 GHz / V
I d
1 / 2   h
ν i
I d
0.01 0.1   mA
10   Hz
100   mA
25   MHz
10   s
T d
I d
I d
I d
10   Hz
I d
70   mW
10   MHz
20   kHz
ν i
ν L
I d
1 / 2   h
> 48   h
> 12   days )
100 kHz )
λ 894   nm
6   pm
( 3   GHz )
5 .5   cm
( 17   pm

Metrics