Abstract

An absorption-line-locked fiber laser based on the selection and conversion of a gas absorption line into a highly stable intracavity transmission narrowband filter is demonstrated. The laser has attractive properties for gas-sensing applications due to its frequency stability and multiwavelength selection capability.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. Stewart, G. Whitenett, P. Shields, J. Marshall, and B. Culshaw, "Industrial and highway sensors technology," in Design of Fiber Laser and Sensor Systems for Gas Spectroscopy in the Near-IR, Proc. SPIE 5272, 172-180 (2003).
  2. K. Chan, H. Ito, and H. Inaba, "An optical-fiber-based gas sensor for remote absorption measurement of low-level CH4 gas in the near-infrared region," J. Lightwave Technol. 2, 234-237 (1984).
    [CrossRef]
  3. S. L. Gilber, "Frequency stabilization of a tunable erbium-doped fiber laser," Opt. Lett. 16, 150-152 (1991).
  4. J. Rauschenberger, T. M. Fortier, D. J. Jones, J. Ye, and S. T. Cundiff, "Control of the frequency comb from a modelocked erbium-doped fiber laser," Opt. Express 10, 1404-1410 (2002).
    [PubMed]
  5. S. Seel, R. Storz, G. Ruoso, J. Mlynek, and S. Schiller, "Cryogenic optical resonators: a new tool for laser frequency stabilization at the 1 Hz level," Phys. Rev. Lett. 78, 4741-4744 (1997).
    [CrossRef]
  6. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, "Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared," Opt. Lett. 29, 250-252 (2004).
    [CrossRef] [PubMed]
  7. N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, "Laser frequency stabilization using regenerative spectral hole burning," Phys. Rev. B 62, 1473-1476 (2000).
    [CrossRef]
  8. V. V. Yashchuk, D. Budker, and J. R. Davis, "Laser frequency stabilization using linear magneto-optics," Rev. Sci. Instrum. 71, 341-346 (2000).
    [CrossRef]
  9. S. K. Kim, G. Stewart, W. Johnstone, and B. Culshaw, "Mode-hop-free single-longitudinal-mode erbium-doped fiber laser frequency scanned with a fiber ring resonator," Appl. Opt. 38, 5154-5157 (1999).
    [CrossRef]
  10. R. Kashyap and B. Nayar, "An all single-mode fiber Michelson interferometer sensor," J. Lightwave Technol. 1, 619-624 (1983).
    [CrossRef]
  11. J. L. Santos, F. Farahi, T. Newson, A. P. Leite, and D. A. Jackson, "Frequency multiplexing of remote all-fiber Michelson interferometers with lead insensitivity," J. Lightwave Technol. 10, 853-863 (1992).
    [CrossRef]
  12. C. Watts and N. Furstenau, "Multistable fiber-optic Michelson interferometer with electrooptic feedback exhibiting 95 stable states," J. Quantum Electron. 25, 3-5 (1989).
    [CrossRef]
  13. F. Bilodeau, K. O. Hill, B. Malo, D. C. Johnson, and J. Albert, "High-return-loss narrowband all-fiber bandpass transmission filter," Photonics Technol. Lett. 6, 80-82 (1994).
    [CrossRef]
  14. A. D. Kersey, M. J. Marrone, and M. A. Davis, "Polarization insensitive fiber optic Michelson interferometer," Electron. Lett. 27, 518-519 (1991).
    [CrossRef]
  15. "C-band gas cell acetylene cells: C2H2-M," wavelength references data sheet file: Acetylene.pdf.

2004 (1)

2003 (1)

G. Stewart, G. Whitenett, P. Shields, J. Marshall, and B. Culshaw, "Industrial and highway sensors technology," in Design of Fiber Laser and Sensor Systems for Gas Spectroscopy in the Near-IR, Proc. SPIE 5272, 172-180 (2003).

2002 (1)

2000 (2)

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, "Laser frequency stabilization using regenerative spectral hole burning," Phys. Rev. B 62, 1473-1476 (2000).
[CrossRef]

V. V. Yashchuk, D. Budker, and J. R. Davis, "Laser frequency stabilization using linear magneto-optics," Rev. Sci. Instrum. 71, 341-346 (2000).
[CrossRef]

1999 (1)

1997 (1)

S. Seel, R. Storz, G. Ruoso, J. Mlynek, and S. Schiller, "Cryogenic optical resonators: a new tool for laser frequency stabilization at the 1 Hz level," Phys. Rev. Lett. 78, 4741-4744 (1997).
[CrossRef]

1994 (1)

F. Bilodeau, K. O. Hill, B. Malo, D. C. Johnson, and J. Albert, "High-return-loss narrowband all-fiber bandpass transmission filter," Photonics Technol. Lett. 6, 80-82 (1994).
[CrossRef]

1992 (1)

J. L. Santos, F. Farahi, T. Newson, A. P. Leite, and D. A. Jackson, "Frequency multiplexing of remote all-fiber Michelson interferometers with lead insensitivity," J. Lightwave Technol. 10, 853-863 (1992).
[CrossRef]

1991 (2)

A. D. Kersey, M. J. Marrone, and M. A. Davis, "Polarization insensitive fiber optic Michelson interferometer," Electron. Lett. 27, 518-519 (1991).
[CrossRef]

S. L. Gilber, "Frequency stabilization of a tunable erbium-doped fiber laser," Opt. Lett. 16, 150-152 (1991).

1989 (1)

C. Watts and N. Furstenau, "Multistable fiber-optic Michelson interferometer with electrooptic feedback exhibiting 95 stable states," J. Quantum Electron. 25, 3-5 (1989).
[CrossRef]

1984 (1)

K. Chan, H. Ito, and H. Inaba, "An optical-fiber-based gas sensor for remote absorption measurement of low-level CH4 gas in the near-infrared region," J. Lightwave Technol. 2, 234-237 (1984).
[CrossRef]

1983 (1)

R. Kashyap and B. Nayar, "An all single-mode fiber Michelson interferometer sensor," J. Lightwave Technol. 1, 619-624 (1983).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

A. D. Kersey, M. J. Marrone, and M. A. Davis, "Polarization insensitive fiber optic Michelson interferometer," Electron. Lett. 27, 518-519 (1991).
[CrossRef]

J. Lightwave Technol. (3)

R. Kashyap and B. Nayar, "An all single-mode fiber Michelson interferometer sensor," J. Lightwave Technol. 1, 619-624 (1983).
[CrossRef]

J. L. Santos, F. Farahi, T. Newson, A. P. Leite, and D. A. Jackson, "Frequency multiplexing of remote all-fiber Michelson interferometers with lead insensitivity," J. Lightwave Technol. 10, 853-863 (1992).
[CrossRef]

K. Chan, H. Ito, and H. Inaba, "An optical-fiber-based gas sensor for remote absorption measurement of low-level CH4 gas in the near-infrared region," J. Lightwave Technol. 2, 234-237 (1984).
[CrossRef]

J. Quantum Electron. (1)

C. Watts and N. Furstenau, "Multistable fiber-optic Michelson interferometer with electrooptic feedback exhibiting 95 stable states," J. Quantum Electron. 25, 3-5 (1989).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Photonics Technol. Lett. (1)

F. Bilodeau, K. O. Hill, B. Malo, D. C. Johnson, and J. Albert, "High-return-loss narrowband all-fiber bandpass transmission filter," Photonics Technol. Lett. 6, 80-82 (1994).
[CrossRef]

Phys. Rev. B (1)

N. M. Strickland, P. B. Sellin, Y. Sun, J. L. Carlsten, and R. L. Cone, "Laser frequency stabilization using regenerative spectral hole burning," Phys. Rev. B 62, 1473-1476 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

S. Seel, R. Storz, G. Ruoso, J. Mlynek, and S. Schiller, "Cryogenic optical resonators: a new tool for laser frequency stabilization at the 1 Hz level," Phys. Rev. Lett. 78, 4741-4744 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

V. V. Yashchuk, D. Budker, and J. R. Davis, "Laser frequency stabilization using linear magneto-optics," Rev. Sci. Instrum. 71, 341-346 (2000).
[CrossRef]

Other (2)

"C-band gas cell acetylene cells: C2H2-M," wavelength references data sheet file: Acetylene.pdf.

G. Stewart, G. Whitenett, P. Shields, J. Marshall, and B. Culshaw, "Industrial and highway sensors technology," in Design of Fiber Laser and Sensor Systems for Gas Spectroscopy in the Near-IR, Proc. SPIE 5272, 172-180 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Absorption-line-locked fiber filter configuration.

Fig. 2
Fig. 2

Simulation of the absorption-line-locked fiber filter spectral response for (a) optimum design and (b) practical conditions. (left) Spectral power density prior to interference at the coupler. (right) Interference signals for in-phase and out-of-phase cases.

Fig. 3
Fig. 3

Absorption spectra of the acetylene gas cell.

Fig. 4
Fig. 4

In-phase and out-of-phase output of the absorption-line-locked filter measured with an OSA.

Fig. 5
Fig. 5

Detector voltage output for in-phase and out-of-phase locking conditions. (inset) Servo off and on.

Fig. 6
Fig. 6

Theoretical in-phase and out-of-phase interference.

Fig. 7
Fig. 7

Comparison between theoretical and experimental results for destructive interference.

Fig. 8
Fig. 8

Cavity configuration proposed for the absorption-line-locked fiber laser.

Fig. 9
Fig. 9

Detector voltage output for locking conditions in output 2 (see Fig. 8).

Fig. 10
Fig. 10

Output fiber laser at 1535.3   nm (solid curve), normalized absorption spectrum of the acetylene gas cell (line) and reflection spectrum of the Bragg grating (dot curve).

Fig. 11
Fig. 11

Output power of the fiber laser versus input power of the pump laser diode.

Metrics