Abstract

We present a system based on digital holography suitable for the investigation of microscopic objects. To increase the resolution of the system a deep (193  nm) UV laser source has been used. A method for compensating aberrations due to the nonperfect optical elements used for the recording has been developed. The system allows the investigation of reflecting and transmitting samples.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
    [CrossRef] [PubMed]
  2. J. W. Goodman and R. W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967).
    [CrossRef]
  3. L. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer Academic, 2004).
  4. I. Yamaguchi and T. Zhang, "Phase-shifting digital holography," Opt. Lett. 22, 1268-1270 (1997).
    [CrossRef] [PubMed]
  5. W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, "Fourier-transform holographic microscope," Appl. Opt. 31, 4973-4978 (1992).
    [CrossRef] [PubMed]
  6. U. Schnars, "Direct phase determination in hologram interferometry with use of digitally recorded holograms," J. Opt. Soc. A 11, 2011-20015 (1994).
    [CrossRef]
  7. G. Pedrini and H. J. Tiziani, "Digital holographic interferometry," in Digital Speckle Pattern Interferometry and Related Techniques, P. K. Rastogi, ed. (Wiley, 2001), pp. 337-362.
  8. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, and C. Depeursinge, "Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy," Opt. Lett. 30, 468-470 (2005).
    [CrossRef] [PubMed]
  9. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, "Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy," J. Opt. Soc. Am. A 23, 3177-3190 (2006).
    [CrossRef]
  10. G. Pedrini, S. Schedin, and H. J. Tiziani, "Aberration compensation in digital holographic reconstruction of microscopic objects," J. Mod. Opt. 48, 1035-1041 (2001).
  11. G. Pedrini, P. Froning, H. J. Tiziani, and F. Mendoza-Santoyo, "Shape measurement of microscopic structures using digital holograms," Opt. Commun. 164, 257-268 (1999).
    [CrossRef]
  12. C. Wagner, S. Seebacher, W. Osten, and W. Jueptner, "Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology," Appl. Opt. 38, 4812-4820 (1999).
    [CrossRef]
  13. L. Xu, X. Peng, J. Miao, and A. K. Asundi, "Studies of digital microscopic holography with applications to microstructure testing," Appl. Opt. 40, 5046-5051 (2001).
    [CrossRef]
  14. G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, "A digital holographic microscope for complete characterization of microelectromechanical systems," Meas. Sci. Technol. 15, 529-539 (2004).
    [CrossRef]
  15. L. Martínez-León, G. Pedrini, and W. Osten, "Applications of short-coherence digital holography in microscopy," Appl. Opt. 44, 3977-3984 (2005).
    [CrossRef] [PubMed]
  16. Y. Takaki and H. Ohzu, "Fast numerical reconstruction technique for high-resolution hybrid holographic microscopy," Appl. Opt. 38, 2204-2211 (1999).
    [CrossRef]
  17. F. Zhang, I. Yamaguchi, and L. P. Yaroslavsky, "Algorithm for reconstruction of digital holograms with adjustable magnification," Opt. Lett. 29, 1668-1670 (2004).
    [CrossRef] [PubMed]
  18. F. Zhang, G. Pedrini, and W. Osten, "Reconstruction algorithm for high-numerical-aperture holograms with diffraction-limited resolution," Opt. Lett. 31, 1633-1635 (2006).
    [CrossRef] [PubMed]
  19. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography of microspheres," Appl. Opt. 41, 5367-5375 (2002).
    [CrossRef] [PubMed]
  20. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," Appl. Opt. 45, 836-850 (2006).
    [CrossRef] [PubMed]
  21. A.-S. Morlens, J. Gautier, G. Rey, P. Zeitoun, J.-P. Caumes, M. Kos-Rosset, H. Merdji, S. Kazamias, K. Cassou, and M. Fajardo, "Submicrometer digital in-line holographic microscopy at 32 nm with high-order harmonics," Opt. Lett. 31, 3095-3097 (2006).
    [CrossRef] [PubMed]
  22. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, "Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation," Appl. Opt. 45, 851-863 (2006).
    [CrossRef] [PubMed]
  23. S. Hell and E. H. K. Stelzer, "Properties of a 4Pi confocal fluorescence microscope," J. Opt. Soc. Am. A 9, 2159-2166 (1992).
    [CrossRef]

2006

2005

2004

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, "A digital holographic microscope for complete characterization of microelectromechanical systems," Meas. Sci. Technol. 15, 529-539 (2004).
[CrossRef]

F. Zhang, I. Yamaguchi, and L. P. Yaroslavsky, "Algorithm for reconstruction of digital holograms with adjustable magnification," Opt. Lett. 29, 1668-1670 (2004).
[CrossRef] [PubMed]

2002

2001

L. Xu, X. Peng, J. Miao, and A. K. Asundi, "Studies of digital microscopic holography with applications to microstructure testing," Appl. Opt. 40, 5046-5051 (2001).
[CrossRef]

G. Pedrini, S. Schedin, and H. J. Tiziani, "Aberration compensation in digital holographic reconstruction of microscopic objects," J. Mod. Opt. 48, 1035-1041 (2001).

1999

1997

1994

U. Schnars, "Direct phase determination in hologram interferometry with use of digitally recorded holograms," J. Opt. Soc. A 11, 2011-20015 (1994).
[CrossRef]

1992

1967

J. W. Goodman and R. W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

1948

D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
[CrossRef] [PubMed]

Appl. Opt.

W. S. Haddad, D. Cullen, J. C. Solem, J. W. Longworth, A. McPherson, K. Boyer, and C. K. Rhodes, "Fourier-transform holographic microscope," Appl. Opt. 31, 4973-4978 (1992).
[CrossRef] [PubMed]

C. Wagner, S. Seebacher, W. Osten, and W. Jueptner, "Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology," Appl. Opt. 38, 4812-4820 (1999).
[CrossRef]

L. Xu, X. Peng, J. Miao, and A. K. Asundi, "Studies of digital microscopic holography with applications to microstructure testing," Appl. Opt. 40, 5046-5051 (2001).
[CrossRef]

L. Martínez-León, G. Pedrini, and W. Osten, "Applications of short-coherence digital holography in microscopy," Appl. Opt. 44, 3977-3984 (2005).
[CrossRef] [PubMed]

Y. Takaki and H. Ohzu, "Fast numerical reconstruction technique for high-resolution hybrid holographic microscopy," Appl. Opt. 38, 2204-2211 (1999).
[CrossRef]

W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography of microspheres," Appl. Opt. 41, 5367-5375 (2002).
[CrossRef] [PubMed]

J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," Appl. Opt. 45, 836-850 (2006).
[CrossRef] [PubMed]

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, "Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation," Appl. Opt. 45, 851-863 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

J. W. Goodman and R. W. Lawrence, "Digital image formation from electronically detected holograms," Appl. Phys. Lett. 11, 77-79 (1967).
[CrossRef]

J. Mod. Opt.

G. Pedrini, S. Schedin, and H. J. Tiziani, "Aberration compensation in digital holographic reconstruction of microscopic objects," J. Mod. Opt. 48, 1035-1041 (2001).

J. Opt. Soc. A

U. Schnars, "Direct phase determination in hologram interferometry with use of digitally recorded holograms," J. Opt. Soc. A 11, 2011-20015 (1994).
[CrossRef]

J. Opt. Soc. Am. A

Meas. Sci. Technol.

G. Coppola, P. Ferraro, M. Iodice, S. De Nicola, A. Finizio, and S. Grilli, "A digital holographic microscope for complete characterization of microelectromechanical systems," Meas. Sci. Technol. 15, 529-539 (2004).
[CrossRef]

Nature

D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948).
[CrossRef] [PubMed]

Opt. Commun.

G. Pedrini, P. Froning, H. J. Tiziani, and F. Mendoza-Santoyo, "Shape measurement of microscopic structures using digital holograms," Opt. Commun. 164, 257-268 (1999).
[CrossRef]

Opt. Lett.

Other

G. Pedrini and H. J. Tiziani, "Digital holographic interferometry," in Digital Speckle Pattern Interferometry and Related Techniques, P. K. Rastogi, ed. (Wiley, 2001), pp. 337-362.

L. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer Academic, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for UV hologram recording.

Fig. 2
Fig. 2

NA for a setup without optical elements between the sample and the CCD. (a) Sketch of the systems realized at our Institute (b) with refractive index diagram and (c) effective NA = sin   θ .

Fig. 3
Fig. 3

Optical arrangement with lens.

Fig. 4
Fig. 4

Recostructed wavefront from a digital hologram of a microcircuit illuminated in reflection. (a) Amplitude and (b) phase reconstructed without adaption of the reference are represented. After correction we get aberration-free reconstructions of the (c) amplitude and (d) phase. The field of view is 300 μ m × 300 μ m .

Fig. 5
Fig. 5

Investigation of a Pentium I microstructure. (a) Object intensity. Phase map (b) before and (c) after correction.

Fig. 6
Fig. 6

(Color online) Investigation of a lenslet array. (a) Object intensity; phase of the transmitted wavefront (b) before and (c) after correction; (d) pseudo-3D phase representation of the phase in (c); phase of the reflected wavefront (e) before and (f) after correction; (g) pseudo-3D representation of (f); (h) phase in reflected and transmitted along two lines; (i) subtraction between reflected–transmitted wavefront along one line.

Fig. 7
Fig. 7

Investigation of micro-organisms. (a) Object intensity. Phase map (b) before and (c) after correction.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I ( x H , y H ) = | r ( x H , y H ) | 2 + | u ( x H , y H ) | 2 + r ( x H , y H ) u * ( x H , y H ) + r * ( x H , y H ) u ( x H , y H ) ,
NA = n   sin   θ = n D 2 d 2 + ( D / 2 ) 2 ,
r = r B ,
u = r * r u = r * B * r u = B * u
u n a = C u = C u B * ,

Metrics