Abstract

We theoretically analyze type-I broadband second-harmonic generation (SHG) of femtosecond laser pulses based on a quasi-phase-matching configuration in periodically poled congruent LiNbO3 (LN) and periodically poled MgO:LiNbO3 (PPMgLN) (5% and 7%). Group-velocity matching (GVM) can be achieved at the fundamental waves of 1.59, 1.56, and 1.55μm for SHG when the three types of crystals have grating periods of 22.31, 20.07, and 23.45μm, respectively. It is found that the central wavelength of the fundamental wave for GVM will increase with the decrease of MgO doping in LN. It is concluded that the shift of the GVM central wavelength is due to the difference of MgO doping, which changes the dispersion of the crystal. Therefore, tunable and high efficiency broadband SHG of femtosecond laser pulses in a long crystal can be realized by selecting different doping rates of PPMgLN.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. J. Huang, J. R. Kurz, C. Langrock, A. M. Schober, and M. M. Fejer, "Quasi-group-velocity matching using integrated-optic structures," Opt. Lett. 29, 2482-2484 (2004).
    [CrossRef] [PubMed]
  2. N. Fujioka, S. Ashihara, H. Ono, T. Shimura, and K. Kuroda, "Group-velocity-matched noncollinear second-harmonic generation in quasi-phase matching," J. Opt. Soc. Am. B 22, 1283-1289 (2005).
    [CrossRef]
  3. R. Wu, Y. Chen, J. Zhang, X. Chen, and Y. Xia, "Broadening of the second-harmonic phase-matching bandwidth in type II periodically poled KTP," Appl. Opt. 44, 5561-5564 (2005).
    [CrossRef] [PubMed]
  4. Y. Wang, J. Fonseca-Campos, C.-Q. Xu, S. Yang, E. A. Ponomarev, and X. Bao, "Picosecond-pulse wavelength conversion based on cascaded second-harmonic generation-difference frequency generation in a periodically poled lithium niobate waveguide," Appl. Opt. 45, 5391-5403 (2006).
    [CrossRef] [PubMed]
  5. S. Wang, V. Pasiskevicius, J. Hellstrom, F. Laurell, and H. Karlsson, "First-order type II quasi-phase-matched UV generation in periodically poled KTP," Opt. Lett. 24, 978-980 (1999).
    [CrossRef]
  6. H. Ishizuki, I. Shoji, and T. Taira, "Periodical poling characteristics of congruent MgO:LiNbO3 crystals," Appl. Phys. Lett. 82, 4062-4063 (2003).
    [CrossRef]
  7. M. M. J. W. van. Herpen, S. E. Bisson, and F. J. M. Harren, "Continuous-wave operation of a single-frequency optical parametric oscillator at 4-5 μm based on periodically poled LiNbO3," Opt. Lett. 28, 2497-2499 (2003).
    [CrossRef] [PubMed]
  8. G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, "Simultaneously efficient blue and red light generations in a periodically poled LiTaO3," Appl. Phys. Lett. 78, 3006-6008 (2001).
    [CrossRef]
  9. I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, "Absolute scale of second-order nonlinear-optical coefficients," J. Opt. Soc. Am. B 14, 2268-2294 (1997).
    [CrossRef]
  10. D. A. Bryan, R. Gerson, and H. E. Tomaschke, " Increased optical damage resistance in lithium niobate," Appl. Phys. Lett. 44, 847-849 (1984).
    [CrossRef]
  11. A. Kuroda, S. Kurimura, and Y. Uesu, "Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields," Appl. Phys. Lett. 69, 1565-1567 (1996).
    [CrossRef]
  12. N. E. Yu, J. H. Ro, and M. Cha, "Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band," Opt. Lett. 27, 1046-1048 (2002).
    [CrossRef]
  13. N. E. Yu, S. Kurimura, and K. Kitamura, "Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate," Appl. Phys. Lett. 82, 3388-3390 (2003).
    [CrossRef]
  14. P. Sen, P. K. Sen, R. Bhatt, S. Kar, V. Shukla, and K. S. Bartwal, "The effect of MgO doping on optical properties of LiNbO3 single crystals," Solid State Commun. 129, 747-752 (2004).
    [CrossRef]
  15. Y. Chen, X. Chen, S. Xie, X. Zeng, Y. Xia, and Y. Chen, "Polarization dependence of quasi-phase-matched second-harmonic generation in bulk periodically poled LiNbO3," J. Opt. A 4, 324-328 (2002).
    [CrossRef]
  16. D. H. Jundt, "Temperature-dependent Sellmeier equation for the index of refraction, nc, in congruent lithium niobate," Opt. Lett. 22, 1553-1555 (1997).
    [CrossRef]
  17. D. Zelmon, D. Small, and D. Jundt, "Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. magnesium oxide doped lithium niobate," J. Opt. Soc. Am. B 14, 3319-3322 (1997).
    [CrossRef]
  18. Casix, http://www.casix.com/product/prod_cry_LiNbO3.html.
  19. L. J. Hu, Y. H. Chang, I. N. Lin, and S. J. Yang, "Defects of lithium niobate crystals heavily doped with MgO," J. Cryst. Growth 114, 191-197 (1991).
    [CrossRef]
  20. B. Boulanger, J. P. Feve, G. Marnier, C. Bonnin, and P. Villeval, "Absolute measurement of quadratic nonlinearities from phase-matched second-harmonic generation in a single KTP crystal cut as a sphere," J. Opt. Soc. Am. B 14, 1380-1386 (1997).
    [CrossRef]

2006 (1)

2005 (2)

2004 (2)

P. Sen, P. K. Sen, R. Bhatt, S. Kar, V. Shukla, and K. S. Bartwal, "The effect of MgO doping on optical properties of LiNbO3 single crystals," Solid State Commun. 129, 747-752 (2004).
[CrossRef]

J. Huang, J. R. Kurz, C. Langrock, A. M. Schober, and M. M. Fejer, "Quasi-group-velocity matching using integrated-optic structures," Opt. Lett. 29, 2482-2484 (2004).
[CrossRef] [PubMed]

2003 (3)

H. Ishizuki, I. Shoji, and T. Taira, "Periodical poling characteristics of congruent MgO:LiNbO3 crystals," Appl. Phys. Lett. 82, 4062-4063 (2003).
[CrossRef]

M. M. J. W. van. Herpen, S. E. Bisson, and F. J. M. Harren, "Continuous-wave operation of a single-frequency optical parametric oscillator at 4-5 μm based on periodically poled LiNbO3," Opt. Lett. 28, 2497-2499 (2003).
[CrossRef] [PubMed]

N. E. Yu, S. Kurimura, and K. Kitamura, "Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate," Appl. Phys. Lett. 82, 3388-3390 (2003).
[CrossRef]

2002 (2)

N. E. Yu, J. H. Ro, and M. Cha, "Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band," Opt. Lett. 27, 1046-1048 (2002).
[CrossRef]

Y. Chen, X. Chen, S. Xie, X. Zeng, Y. Xia, and Y. Chen, "Polarization dependence of quasi-phase-matched second-harmonic generation in bulk periodically poled LiNbO3," J. Opt. A 4, 324-328 (2002).
[CrossRef]

2001 (1)

G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, "Simultaneously efficient blue and red light generations in a periodically poled LiTaO3," Appl. Phys. Lett. 78, 3006-6008 (2001).
[CrossRef]

1999 (1)

1997 (4)

1996 (1)

A. Kuroda, S. Kurimura, and Y. Uesu, "Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields," Appl. Phys. Lett. 69, 1565-1567 (1996).
[CrossRef]

1991 (1)

L. J. Hu, Y. H. Chang, I. N. Lin, and S. J. Yang, "Defects of lithium niobate crystals heavily doped with MgO," J. Cryst. Growth 114, 191-197 (1991).
[CrossRef]

1984 (1)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, " Increased optical damage resistance in lithium niobate," Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (5)

H. Ishizuki, I. Shoji, and T. Taira, "Periodical poling characteristics of congruent MgO:LiNbO3 crystals," Appl. Phys. Lett. 82, 4062-4063 (2003).
[CrossRef]

G. Z. Luo, S. N. Zhu, J. L. He, Y. Y. Zhu, H. T. Wang, Z. W. Liu, C. Zhang, and N. B. Ming, "Simultaneously efficient blue and red light generations in a periodically poled LiTaO3," Appl. Phys. Lett. 78, 3006-6008 (2001).
[CrossRef]

N. E. Yu, S. Kurimura, and K. Kitamura, "Efficient frequency doubling of a femtosecond pulse with simultaneous group-velocity matching and quasi phase matching in periodically poled, MgO-doped lithium niobate," Appl. Phys. Lett. 82, 3388-3390 (2003).
[CrossRef]

D. A. Bryan, R. Gerson, and H. E. Tomaschke, " Increased optical damage resistance in lithium niobate," Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

A. Kuroda, S. Kurimura, and Y. Uesu, "Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields," Appl. Phys. Lett. 69, 1565-1567 (1996).
[CrossRef]

J. Cryst. Growth (1)

L. J. Hu, Y. H. Chang, I. N. Lin, and S. J. Yang, "Defects of lithium niobate crystals heavily doped with MgO," J. Cryst. Growth 114, 191-197 (1991).
[CrossRef]

J. Opt. A (1)

Y. Chen, X. Chen, S. Xie, X. Zeng, Y. Xia, and Y. Chen, "Polarization dependence of quasi-phase-matched second-harmonic generation in bulk periodically poled LiNbO3," J. Opt. A 4, 324-328 (2002).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Lett. (5)

Solid State Commun. (1)

P. Sen, P. K. Sen, R. Bhatt, S. Kar, V. Shukla, and K. S. Bartwal, "The effect of MgO doping on optical properties of LiNbO3 single crystals," Solid State Commun. 129, 747-752 (2004).
[CrossRef]

Other (1)

Casix, http://www.casix.com/product/prod_cry_LiNbO3.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Grating period versus fundamental wavelength for broadband QPM SHG. At the center temperature, the grating periods are 22.31, 20.07, and 23.45 μm at the broadband SHG center wavelengths of 1.59, 1.56, and 1 .55 μm for PPCLN, 5% and 7% PPMgLN.

Fig. 2
Fig. 2

GV walk-off parameter versus fundamental wavelength for PPCLN, 5% and 7% PPMgLN, in which GVM ( δ = 0 ) can be achieved at the fundamental wavelength of 1.59, 1.56, and 1.55 μm , respectively.

Fig. 3
Fig. 3

Variation of birefringence ( Δ n = n e n o ) for PPCLN, 5% and 7% PPMgLN of fundamental wave versus fundamental wavelength.

Fig. 4
Fig. 4

Wavelength domain of SH wave. The inset corresponds to the lowest point on the dotted curve of PPMgLN. For PPCLN, 5% and 7% PPMgLN, the ranges of conversion efficiency higher than 50% are 1547 1607 , 1545 1575 , and 1537 1567 nm , respectively.

Tables (1)

Tables Icon

Table 1 Parameters of GV-Matched Broadband QPM SHG for Differently Doped MgO:LN

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

η sinc 2 ( Δ k L / 2 ) ,
Δ k = k z 2 ω 2 k y ω 2 π Λ 1 = 4 π ( n z 2 ω n y ω ) λ 2 π Λ 1 .
Λ 1 = 2 π Δ k = λ 2 ( n z 2 ω n y ω ) ,
d ( Δ k ) d λ = 4 π c λ 2 δ .
d ( Δ k ) d λ = d ( k z 2 ω 2 k y ω ) d λ = 4 π λ 2 ( ( n y ω λ d n y ω d λ ) ( n z 2 ω λ d n z 2 ω d λ ) ) = 4 π c λ 2 δ .

Metrics