Abstract

An experimental method is proposed to increase the output power from a C-aperture very-small-aperture laser (VSAL). This method is based on the resonant property of a C aperture and the tunability of the emitting wavelength from a VSAL. The drive current of the VSAL is altered to tune the emitting wavelength. The experimental results indicate that, when the emitting wavelength matches the resonant wavelength of the C aperture fabricated on the VSAL, the output power is enhanced 7.2 times. So a strong output power from a C-aperture VSAL can be obtained with small power consumption. This study may be useful to the design and application of a VSAL.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
    [CrossRef]
  2. A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H.-J. Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
    [CrossRef]
  3. W. A. Challener, T. W. McDaniel, C. D. Mihalcea, K. R. Mountfield, K. Pelhos, and I. K. Sendur, "Light delivery techniques for heat-assisted magnetic recordings," Jpn. J. Appl. Phys. Part 1 42, 981-988 (2003).
    [CrossRef]
  4. J. Hashizume and F. Koyama, "Plasmon enhanced optical near-field probing of metal nanoaperture surface emitting laser," Opt. Express 12, 6391-6396 (2004).
    [CrossRef] [PubMed]
  5. J. Hashizume, S. Shinada, and F. Koyama, "Near-field optical probing using a microaperture GaInAs/GaAs surface emitting laser," Jpn. J. Appl. Phys. Part 2 41, L700-L702 (2002).
    [CrossRef]
  6. J. Hashizume, S. Shinada, F. Koyama, and K. Iga, "Reflection induced voltage change of surface emitting laser for optical probing," Opt. Rev. 9, 186-188 (2002).
    [CrossRef]
  7. Q. Gan, G. Song, G. Yang, Y. Xu, J. Gao, Y. Li, Q. Cao, L. Chen, H. Lu, Z. Chen, W. Zeng, and R. Yan, "Near-field scanning optical microscopy with an active probe," Appl. Phys. Lett. 88, 121111 (2006).
    [CrossRef]
  8. T. Ohno, A. V. Itagi, F. Chen, J. A. Bain, and T. E. Schlesinger, "Characterization of very small aperture GaN lasers," Proc. SPIE 5380, 393-402 (2004).
    [CrossRef]
  9. Q. Gan, G. Song, Y. Xu, J. Gao, Q. Cao, X. Pan, Y. Zhong, G. Yang, X. Zhu, and L. Chen, "Performance analysis of very-small-aperture lasers," Opt. Lett. 30, 1470-1472 (2005).
    [CrossRef] [PubMed]
  10. H. Gai, J. Wang, Q. Tian, W. Xia, and X. Xu, "Experimental investigation of the performance of an annular aperture and a circular aperture on the same very-small-aperture laser facet," Appl. Opt. 46, 6449-6453 (2007).
    [CrossRef] [PubMed]
  11. H. Gai, J. Wang, Q. Tian, W. Xia, and X. Xu, "Experimental investigation on the oscillation of very-small-aperture lasers with different depth grooves on their front facets," J. Opt. A 9, 998-1001 (2007).
    [CrossRef]
  12. H. Gai, J. Wang, Q. Tian, W. Xia, X. Xu, S. Han, and Z. Hao, "Experimental research on the performance of a very-small-aperture laser," J. Microsc. (to be published).
    [PubMed]
  13. X. Shi, R. L. Thornton, and L. Hesselink, "A nano-aperture with 1000× power throughput enhancement for very small aperture laser system (VSAL)," Proc. SPIE 4342, 320-327 (2002).
    [CrossRef]
  14. Z. Rao, J. A. Matteo, L. Hesselink, and J. S. Harris, "A C-shaped nanoaperture vertical-cavity surface-emitting laser for high-density near-field optical data storage," Proc. SPIE 6132, 61320J (2006).
    [CrossRef]
  15. Z. Rao, J. A. Matteo, L. Hesselink, and J. S. Harris, "High-intensity C-shaped nanoaperture vertical-cavity surface-emitting laser with controlled polarization," Appl. Phys. Lett. 90, 191110 (2007).
    [CrossRef]
  16. K. Tanaka and M. Tanaka, "Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen," J. Appl. Phys. 95, 3765-3771 (2004).
    [CrossRef]
  17. K. Tanaka, M. Tanaka, and T. Sugiyama, "Metallic tip probe providing high intensity and small spot size with a small background light in near-field optics," Appl. Phys. Lett. 87, 151116 (2005).
    [CrossRef]
  18. E. X. Jin and X. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110 (2006).
    [CrossRef]
  19. E. X. Jin and X. Xu, "Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture," Appl. Phys. B 84, 3-9 (2006).
    [CrossRef]
  20. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361-364 (2006).
    [CrossRef] [PubMed]
  21. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
    [CrossRef]
  22. F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, "Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser," Appl. Phys. Lett. 83, 3245-3247 (2003).
    [CrossRef]
  23. L. Tang, D. A. B. Miller, A. K. Okyay, J. A. Matteo, Y. Yuen, K. C. Saraswat, and L. Hesselink, "C-shaped nanoaperture-enhanced germanium photodetector," Opt. Lett. 31, 1519-1521 (2006).
    [CrossRef] [PubMed]
  24. X. Shi and L. Hesselink, "Design of a C aperture to achieve λ/10 resolution and resonant transmission," J. Opt. Soc. Am. B 21, 1305-1317 (2004).
    [CrossRef]
  25. J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648-650 (2004).
    [CrossRef]
  26. F. Chen, J. Zhai, D. D. Stancil, and T. E. Schlesinger, "Fabrication of very small aperture laser (VSAL) from a commercial edge emitting laser," Jpn. J. Appl. Phys. Part 1 40, 1794-1795 (2001).
    [CrossRef]
  27. K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC, 1993).
  28. H. Gai, J. Wang, and Q. Tian, "Modified Debye model parameters of metals applicable for broadband calculations," Appl. Opt. 46, 2229-2233 (2007).
    [CrossRef] [PubMed]
  29. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966).
    [CrossRef]
  30. Z. P. Liao, H. L. Wong, G. P. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analysis," Sci. Sin., Ser. A 28, 1063-1076 (1984).
  31. "XFDTD 6.2" (REMCOM Inc., 2000).
  32. X. Xu, E. X. Jin, L. Wang, and S. Uppuluri, "Design, fabrication, and characterization of nanometer-scale ridged aperture optical antennae," Proc. SPIE 6106, 61061J (2006).
    [CrossRef]
  33. J. Hashizume and F. Koyama, "Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser," Appl. Phys. Lett. 84, 3226-3228 (2004).
    [CrossRef]
  34. K. Tanaka, H. Hosaka, K. Itao, M. Oumi, T. Niwa, T. Miyatani, Y. Mitsuoka, K. Nakajima, and T. Ohkubo, "Improvements in near-field optical performance using localized surface plasmon excitation by a scatterer-formed aperture," Appl. Phys. Lett. 83, 1083-1085 (2003).
    [CrossRef]

2007 (4)

H. Gai, J. Wang, Q. Tian, W. Xia, and X. Xu, "Experimental investigation of the performance of an annular aperture and a circular aperture on the same very-small-aperture laser facet," Appl. Opt. 46, 6449-6453 (2007).
[CrossRef] [PubMed]

H. Gai, J. Wang, Q. Tian, W. Xia, and X. Xu, "Experimental investigation on the oscillation of very-small-aperture lasers with different depth grooves on their front facets," J. Opt. A 9, 998-1001 (2007).
[CrossRef]

Z. Rao, J. A. Matteo, L. Hesselink, and J. S. Harris, "High-intensity C-shaped nanoaperture vertical-cavity surface-emitting laser with controlled polarization," Appl. Phys. Lett. 90, 191110 (2007).
[CrossRef]

H. Gai, J. Wang, and Q. Tian, "Modified Debye model parameters of metals applicable for broadband calculations," Appl. Opt. 46, 2229-2233 (2007).
[CrossRef] [PubMed]

2006 (8)

Z. Rao, J. A. Matteo, L. Hesselink, and J. S. Harris, "A C-shaped nanoaperture vertical-cavity surface-emitting laser for high-density near-field optical data storage," Proc. SPIE 6132, 61320J (2006).
[CrossRef]

L. Tang, D. A. B. Miller, A. K. Okyay, J. A. Matteo, Y. Yuen, K. C. Saraswat, and L. Hesselink, "C-shaped nanoaperture-enhanced germanium photodetector," Opt. Lett. 31, 1519-1521 (2006).
[CrossRef] [PubMed]

X. Xu, E. X. Jin, L. Wang, and S. Uppuluri, "Design, fabrication, and characterization of nanometer-scale ridged aperture optical antennae," Proc. SPIE 6106, 61061J (2006).
[CrossRef]

E. X. Jin and X. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

E. X. Jin and X. Xu, "Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture," Appl. Phys. B 84, 3-9 (2006).
[CrossRef]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361-364 (2006).
[CrossRef] [PubMed]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Q. Gan, G. Song, G. Yang, Y. Xu, J. Gao, Y. Li, Q. Cao, L. Chen, H. Lu, Z. Chen, W. Zeng, and R. Yan, "Near-field scanning optical microscopy with an active probe," Appl. Phys. Lett. 88, 121111 (2006).
[CrossRef]

2005 (2)

Q. Gan, G. Song, Y. Xu, J. Gao, Q. Cao, X. Pan, Y. Zhong, G. Yang, X. Zhu, and L. Chen, "Performance analysis of very-small-aperture lasers," Opt. Lett. 30, 1470-1472 (2005).
[CrossRef] [PubMed]

K. Tanaka, M. Tanaka, and T. Sugiyama, "Metallic tip probe providing high intensity and small spot size with a small background light in near-field optics," Appl. Phys. Lett. 87, 151116 (2005).
[CrossRef]

2004 (6)

X. Shi and L. Hesselink, "Design of a C aperture to achieve λ/10 resolution and resonant transmission," J. Opt. Soc. Am. B 21, 1305-1317 (2004).
[CrossRef]

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648-650 (2004).
[CrossRef]

J. Hashizume and F. Koyama, "Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser," Appl. Phys. Lett. 84, 3226-3228 (2004).
[CrossRef]

T. Ohno, A. V. Itagi, F. Chen, J. A. Bain, and T. E. Schlesinger, "Characterization of very small aperture GaN lasers," Proc. SPIE 5380, 393-402 (2004).
[CrossRef]

J. Hashizume and F. Koyama, "Plasmon enhanced optical near-field probing of metal nanoaperture surface emitting laser," Opt. Express 12, 6391-6396 (2004).
[CrossRef] [PubMed]

K. Tanaka and M. Tanaka, "Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen," J. Appl. Phys. 95, 3765-3771 (2004).
[CrossRef]

2003 (3)

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, "Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser," Appl. Phys. Lett. 83, 3245-3247 (2003).
[CrossRef]

W. A. Challener, T. W. McDaniel, C. D. Mihalcea, K. R. Mountfield, K. Pelhos, and I. K. Sendur, "Light delivery techniques for heat-assisted magnetic recordings," Jpn. J. Appl. Phys. Part 1 42, 981-988 (2003).
[CrossRef]

K. Tanaka, H. Hosaka, K. Itao, M. Oumi, T. Niwa, T. Miyatani, Y. Mitsuoka, K. Nakajima, and T. Ohkubo, "Improvements in near-field optical performance using localized surface plasmon excitation by a scatterer-formed aperture," Appl. Phys. Lett. 83, 1083-1085 (2003).
[CrossRef]

2002 (3)

J. Hashizume, S. Shinada, and F. Koyama, "Near-field optical probing using a microaperture GaInAs/GaAs surface emitting laser," Jpn. J. Appl. Phys. Part 2 41, L700-L702 (2002).
[CrossRef]

J. Hashizume, S. Shinada, F. Koyama, and K. Iga, "Reflection induced voltage change of surface emitting laser for optical probing," Opt. Rev. 9, 186-188 (2002).
[CrossRef]

X. Shi, R. L. Thornton, and L. Hesselink, "A nano-aperture with 1000× power throughput enhancement for very small aperture laser system (VSAL)," Proc. SPIE 4342, 320-327 (2002).
[CrossRef]

2001 (1)

F. Chen, J. Zhai, D. D. Stancil, and T. E. Schlesinger, "Fabrication of very small aperture laser (VSAL) from a commercial edge emitting laser," Jpn. J. Appl. Phys. Part 1 40, 1794-1795 (2001).
[CrossRef]

1999 (1)

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H.-J. Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

1992 (1)

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

1984 (1)

Z. P. Liao, H. L. Wong, G. P. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analysis," Sci. Sin., Ser. A 28, 1063-1076 (1984).

1966 (1)

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

E. X. Jin and X. Xu, "Plasmonic effects in near-field optical transmission enhancement through a single bowtie-shaped aperture," Appl. Phys. B 84, 3-9 (2006).
[CrossRef]

Appl. Phys. Lett. (11)

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, "Plasmonic laser antenna," Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

F. Chen, A. Itagi, J. A. Bain, D. D. Stancil, T. E. Schlesinger, L. Stebounova, G. C. Walker, and B. B. Akhremitchev, "Imaging of optical field confinement in ridge waveguides fabricated on very-small-aperture laser," Appl. Phys. Lett. 83, 3245-3247 (2003).
[CrossRef]

J. A. Matteo, D. P. Fromm, Y. Yuen, P. J. Schuck, W. E. Moerner, and L. Hesselink, "Spectral analysis of strongly enhanced visible light transmission through single C-shaped nanoapertures," Appl. Phys. Lett. 85, 648-650 (2004).
[CrossRef]

J. Hashizume and F. Koyama, "Plasmon-enhancement of optical near-field of metal nanoaperture surface-emitting laser," Appl. Phys. Lett. 84, 3226-3228 (2004).
[CrossRef]

K. Tanaka, H. Hosaka, K. Itao, M. Oumi, T. Niwa, T. Miyatani, Y. Mitsuoka, K. Nakajima, and T. Ohkubo, "Improvements in near-field optical performance using localized surface plasmon excitation by a scatterer-formed aperture," Appl. Phys. Lett. 83, 1083-1085 (2003).
[CrossRef]

Z. Rao, J. A. Matteo, L. Hesselink, and J. S. Harris, "High-intensity C-shaped nanoaperture vertical-cavity surface-emitting laser with controlled polarization," Appl. Phys. Lett. 90, 191110 (2007).
[CrossRef]

K. Tanaka, M. Tanaka, and T. Sugiyama, "Metallic tip probe providing high intensity and small spot size with a small background light in near-field optics," Appl. Phys. Lett. 87, 151116 (2005).
[CrossRef]

E. X. Jin and X. Xu, "Enhanced optical near field from a bowtie aperture," Appl. Phys. Lett. 88, 153110 (2006).
[CrossRef]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, and C.-H. Chang, "Near-field magneto-optics and high density data storage," Appl. Phys. Lett. 61, 142-144 (1992).
[CrossRef]

A. Partovi, D. Peale, M. Wuttig, C. A. Murray, G. Zydzik, L. Hopkins, K. Baldwin, W. S. Hobson, J. Wynn, J. Lopata, L. Dhar, R. Chichester, and J. H.-J. Yeh, "High-power laser light source for near-field optics and its application to high-density optical data storage," Appl. Phys. Lett. 75, 1515-1517 (1999).
[CrossRef]

Q. Gan, G. Song, G. Yang, Y. Xu, J. Gao, Y. Li, Q. Cao, L. Chen, H. Lu, Z. Chen, W. Zeng, and R. Yan, "Near-field scanning optical microscopy with an active probe," Appl. Phys. Lett. 88, 121111 (2006).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966).
[CrossRef]

J. Appl. Phys. (1)

K. Tanaka and M. Tanaka, "Simulation of confined and enhanced optical near-fields for an I-shaped aperture in a pyramidal structure on a thick metallic screen," J. Appl. Phys. 95, 3765-3771 (2004).
[CrossRef]

J. Microsc. (1)

H. Gai, J. Wang, Q. Tian, W. Xia, X. Xu, S. Han, and Z. Hao, "Experimental research on the performance of a very-small-aperture laser," J. Microsc. (to be published).
[PubMed]

J. Opt. A (1)

H. Gai, J. Wang, Q. Tian, W. Xia, and X. Xu, "Experimental investigation on the oscillation of very-small-aperture lasers with different depth grooves on their front facets," J. Opt. A 9, 998-1001 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (3)

F. Chen, J. Zhai, D. D. Stancil, and T. E. Schlesinger, "Fabrication of very small aperture laser (VSAL) from a commercial edge emitting laser," Jpn. J. Appl. Phys. Part 1 40, 1794-1795 (2001).
[CrossRef]

J. Hashizume, S. Shinada, and F. Koyama, "Near-field optical probing using a microaperture GaInAs/GaAs surface emitting laser," Jpn. J. Appl. Phys. Part 2 41, L700-L702 (2002).
[CrossRef]

W. A. Challener, T. W. McDaniel, C. D. Mihalcea, K. R. Mountfield, K. Pelhos, and I. K. Sendur, "Light delivery techniques for heat-assisted magnetic recordings," Jpn. J. Appl. Phys. Part 1 42, 981-988 (2003).
[CrossRef]

Nano Lett. (1)

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, "Nanolithography using high transmission nanoscale bowtie apertures," Nano Lett. 6, 361-364 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Opt. Rev. (1)

J. Hashizume, S. Shinada, F. Koyama, and K. Iga, "Reflection induced voltage change of surface emitting laser for optical probing," Opt. Rev. 9, 186-188 (2002).
[CrossRef]

Proc. SPIE (4)

T. Ohno, A. V. Itagi, F. Chen, J. A. Bain, and T. E. Schlesinger, "Characterization of very small aperture GaN lasers," Proc. SPIE 5380, 393-402 (2004).
[CrossRef]

X. Shi, R. L. Thornton, and L. Hesselink, "A nano-aperture with 1000× power throughput enhancement for very small aperture laser system (VSAL)," Proc. SPIE 4342, 320-327 (2002).
[CrossRef]

Z. Rao, J. A. Matteo, L. Hesselink, and J. S. Harris, "A C-shaped nanoaperture vertical-cavity surface-emitting laser for high-density near-field optical data storage," Proc. SPIE 6132, 61320J (2006).
[CrossRef]

X. Xu, E. X. Jin, L. Wang, and S. Uppuluri, "Design, fabrication, and characterization of nanometer-scale ridged aperture optical antennae," Proc. SPIE 6106, 61061J (2006).
[CrossRef]

Sci. Sin., Ser. A (1)

Z. P. Liao, H. L. Wong, G. P. Yang, and Y. F. Yuan, "A transmitting boundary for transient wave analysis," Sci. Sin., Ser. A 28, 1063-1076 (1984).

Other (2)

"XFDTD 6.2" (REMCOM Inc., 2000).

K. S. Kunz and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics (CRC, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

P-I curve of a 90   nm C-aperture VSAL. The threshold current is approximately 9.6   mA , and the slope efficiency is approximately 8.4 μ W / mA . The inset is the SEM image of the VSAL. The geometry of the 90   nm C aperture is shown in Fig. 2.

Fig. 2
Fig. 2

Geometry of the 90   nm C aperture.

Fig. 3
Fig. 3

Calculated power throughput of the 90   nm C aperture. The resonant wavelength is approximately 660.5   nm . The inset is the waveform of the incident modulated Gaussian pulse.

Fig. 4
Fig. 4

Experimental setup used to measure the near-field spectra from the VSAL.

Fig. 5
Fig. 5

Near-field intensity distribution from the VSAL. The net spot size (FWHM) is 459   nm × 298   nm .

Fig. 6
Fig. 6

Near-field spectra from the VSAL. The drive current is changed from 12   mA to 20   mA in 2   mA steps.

Tables (1)

Tables Icon

Table 1 Experimental Data on the Near-Field Spectra from the VSAL

Metrics