Abstract

Optical nonlinearities of periodically poled LiNbO3 crystals were investigated by the single beam Z-scan technique with a continuous wave (cw) laser beam at 532  nm. The nonlinear optical absorption coefficient and refractive index change are determined to be 8.1×106cm/W and 2.6×104 at 0.5MW/cm2 light intensity, respectively. Both sign and magnitude of the measured refractive nonlinearity are considerably different from the Z-scan results in congruent LiNbO3. The nonlinearities in the periodically poled LiNbO3 induced by 532  nm continuous waves are believed to be mainly due to the photorefractive effect.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
    [CrossRef]
  2. N. G. Broderick, R. G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. Hanna, "Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal," Phys. Rev. Lett. 84, 4345-4348 (2000).
    [CrossRef] [PubMed]
  3. M. Yamada, "Electrically induced Bragg-diffraction grating composed of periodically inverted domains in lithium niobate crystals and its application devices," Rev. Sci. Instrum. 71, 4010-4016 (2000).
    [CrossRef]
  4. Y. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe, and K. Kitamura, "Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy," Appl. Phys. Lett. 81, 4401-4403 (2002).
    [CrossRef]
  5. S. Odoulov, S. T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, "Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies," Phy. Rev. Lett. 84, 3294-3297 (2000).
    [CrossRef]
  6. B. Sturman, M. Aguilar, F. Agulló-López, V. Pruneri, and P. G. Kazansky, "Photorefractive nonlinearity of periodically poled ferroelectrics," J. Opt. Soc. Am. B 14, 2641-2649 (1997).
    [CrossRef]
  7. G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, "Characterization of stoichiometric LiNbO3 grown from melts containing K2O," Appl. Phys. A: Solids Surf. A56, 103-108 (1993).
  8. M. Fontana, K. Chah, M. Aillerie, R. Mouras, and P. Bourson, "Optical damage resistance in undoped LiNbO3 crystals," Opt. Mater. 16, 111-117 (2001).
    [CrossRef]
  9. M. Sheik-Bahae, D. Hutchings, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
    [CrossRef]
  10. F. Z. Henari, K. Cazzini, F. E. Akkari, and W. J. Blau, "Beam waist changes in lithium niobate during Z-scan measurement," Appl. Phys. Lett. 78, 1373-1375 (1995).
  11. H. Li, F. Zhou, X. J. Zhang, and W. Ji, "Picosecond Z-scan study of bound electronic Kerr effect in LiNbO3 crystal associated with two-photon absorption," Appl. Phys. B 64, 659-662 (1997).
    [CrossRef]
  12. L. Pálfalvi, G. Almási, J. Hebling, A. Péter, and K. Polgár, "Measurement of laser-induced refractive index changes of Mg-doped congruent and stoichiometric LiNbO3," Appl. Phys. Lett. 80, 2245-2247 (2002).
    [CrossRef]
  13. Y. L. Chen, W. G. Yan, D. D. Wang, S. L. Chen, and G. Y. Zhang, "Submicron domain inversion in Mg-doped LiNbO3 using backswitched poling with short voltage pulses," Appl. Phys. Lett. 90, 062908-062910 (2007).
    [CrossRef]
  14. L. Pálfalvi, J. Hebling, G. Almási, A. Péter, and K. Polgár, "Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects," J. Opt. A: Pure Appl. Opt. 5, S280-S83 (2003).
    [CrossRef]
  15. J. A. Hermann and R. G. McDuff, "Analysis of spatial scanning with thick optically nonlinear media," J. Opt. Soc. Am. B 10, 2056-2064 (1993).
    [CrossRef]

2007

Y. L. Chen, W. G. Yan, D. D. Wang, S. L. Chen, and G. Y. Zhang, "Submicron domain inversion in Mg-doped LiNbO3 using backswitched poling with short voltage pulses," Appl. Phys. Lett. 90, 062908-062910 (2007).
[CrossRef]

2003

L. Pálfalvi, J. Hebling, G. Almási, A. Péter, and K. Polgár, "Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects," J. Opt. A: Pure Appl. Opt. 5, S280-S83 (2003).
[CrossRef]

2002

L. Pálfalvi, G. Almási, J. Hebling, A. Péter, and K. Polgár, "Measurement of laser-induced refractive index changes of Mg-doped congruent and stoichiometric LiNbO3," Appl. Phys. Lett. 80, 2245-2247 (2002).
[CrossRef]

Y. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe, and K. Kitamura, "Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy," Appl. Phys. Lett. 81, 4401-4403 (2002).
[CrossRef]

2001

M. Fontana, K. Chah, M. Aillerie, R. Mouras, and P. Bourson, "Optical damage resistance in undoped LiNbO3 crystals," Opt. Mater. 16, 111-117 (2001).
[CrossRef]

2000

S. Odoulov, S. T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, "Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies," Phy. Rev. Lett. 84, 3294-3297 (2000).
[CrossRef]

N. G. Broderick, R. G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. Hanna, "Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal," Phys. Rev. Lett. 84, 4345-4348 (2000).
[CrossRef] [PubMed]

M. Yamada, "Electrically induced Bragg-diffraction grating composed of periodically inverted domains in lithium niobate crystals and its application devices," Rev. Sci. Instrum. 71, 4010-4016 (2000).
[CrossRef]

1997

B. Sturman, M. Aguilar, F. Agulló-López, V. Pruneri, and P. G. Kazansky, "Photorefractive nonlinearity of periodically poled ferroelectrics," J. Opt. Soc. Am. B 14, 2641-2649 (1997).
[CrossRef]

H. Li, F. Zhou, X. J. Zhang, and W. Ji, "Picosecond Z-scan study of bound electronic Kerr effect in LiNbO3 crystal associated with two-photon absorption," Appl. Phys. B 64, 659-662 (1997).
[CrossRef]

1995

F. Z. Henari, K. Cazzini, F. E. Akkari, and W. J. Blau, "Beam waist changes in lithium niobate during Z-scan measurement," Appl. Phys. Lett. 78, 1373-1375 (1995).

1993

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, "Characterization of stoichiometric LiNbO3 grown from melts containing K2O," Appl. Phys. A: Solids Surf. A56, 103-108 (1993).

J. A. Hermann and R. G. McDuff, "Analysis of spatial scanning with thick optically nonlinear media," J. Opt. Soc. Am. B 10, 2056-2064 (1993).
[CrossRef]

1992

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

1990

M. Sheik-Bahae, D. Hutchings, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Appl. Phys. A: Solids Surf.

G. I. Malovichko, V. G. Grachev, E. P. Kokanyan, O. F. Schirmer, K. Betzler, B. Gather, F. Jermann, S. Klauer, U. Schlarb, and M. Wöhlecke, "Characterization of stoichiometric LiNbO3 grown from melts containing K2O," Appl. Phys. A: Solids Surf. A56, 103-108 (1993).

Appl. Phys. B

H. Li, F. Zhou, X. J. Zhang, and W. Ji, "Picosecond Z-scan study of bound electronic Kerr effect in LiNbO3 crystal associated with two-photon absorption," Appl. Phys. B 64, 659-662 (1997).
[CrossRef]

Appl. Phys. Lett.

L. Pálfalvi, G. Almási, J. Hebling, A. Péter, and K. Polgár, "Measurement of laser-induced refractive index changes of Mg-doped congruent and stoichiometric LiNbO3," Appl. Phys. Lett. 80, 2245-2247 (2002).
[CrossRef]

Y. L. Chen, W. G. Yan, D. D. Wang, S. L. Chen, and G. Y. Zhang, "Submicron domain inversion in Mg-doped LiNbO3 using backswitched poling with short voltage pulses," Appl. Phys. Lett. 90, 062908-062910 (2007).
[CrossRef]

F. Z. Henari, K. Cazzini, F. E. Akkari, and W. J. Blau, "Beam waist changes in lithium niobate during Z-scan measurement," Appl. Phys. Lett. 78, 1373-1375 (1995).

Y. Cho, K. Fujimoto, Y. Hiranaga, Y. Wagatsuma, A. Onoe, K. Terabe, and K. Kitamura, "Tbit/inch2 ferroelectric data storage based on scanning nonlinear dielectric microscopy," Appl. Phys. Lett. 81, 4401-4403 (2002).
[CrossRef]

IEEE J. Quantum Electron.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, "Quasi-phase-matched second harmonic generation: tuning and tolerances," IEEE J. Quantum Electron. 28, 2631-2654 (1992).
[CrossRef]

M. Sheik-Bahae, D. Hutchings, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

L. Pálfalvi, J. Hebling, G. Almási, A. Péter, and K. Polgár, "Refractive index changes in Mg-doped LiNbO3 caused by photorefraction and thermal effects," J. Opt. A: Pure Appl. Opt. 5, S280-S83 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Mater.

M. Fontana, K. Chah, M. Aillerie, R. Mouras, and P. Bourson, "Optical damage resistance in undoped LiNbO3 crystals," Opt. Mater. 16, 111-117 (2001).
[CrossRef]

Phy. Rev. Lett.

S. Odoulov, S. T. Tarabrova, A. Shumelyuk, I. I. Naumova, and T. O. Chaplina, "Photorefractive response of bulk periodically poled LiNbO3:Y:Fe at high and low spatial frequencies," Phy. Rev. Lett. 84, 3294-3297 (2000).
[CrossRef]

Phys. Rev. Lett.

N. G. Broderick, R. G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. Hanna, "Hexagonally poled lithium niobate: A two-dimensional nonlinear photonic crystal," Phys. Rev. Lett. 84, 4345-4348 (2000).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

M. Yamada, "Electrically induced Bragg-diffraction grating composed of periodically inverted domains in lithium niobate crystals and its application devices," Rev. Sci. Instrum. 71, 4010-4016 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Color online) SEM image of the etched + c surface with inverted ferroelectric domain LiNbO 3 crystal.

Fig. 2
Fig. 2

Scheme of the experimental setup for Z-scan measurements.

Fig. 3
Fig. 3

(Color online) Close-aperture Z-scan traces of the (a) congruent LiNbO 3 crystal and (b) periodically poled LiNbO 3 crystal, measured at incident laser intensity 0.5 MW / cm 2 .

Fig. 4
Fig. 4

(Color online) Open-aperture Z-scan traces of the congruent LiNbO 3 and periodically poled LiNbO 3 crystals, respectively, measured at incident laser intensity 0.5 MW / cm 2 .

Fig. 5
Fig. 5

(Color online) CCD recordings of the transmitted beam spot of the laser irradiance intensity was (a) 0.5 MW / cm 2 and (b) 2 MW / cm 2 .

Equations (74)

Equations on this page are rendered with MathJax. Learn more.

LiNbO 3
532   nm
8.1 × 10 6 cm / W
2.6 × 10 4
0.5 MW / cm 2
LiNbO 3
LiNbO 3
532   nm
( LiNbO 3 )
LiNbO 3
χ ( 2 )
LiNbO 3
LiNbO 3
LiNbO 3
LiNbO 3
532   nm
LiNbO 3
LiNbO 3
LiNbO 3
LiNbO 3
LiNbO 3
LiNbO 3
1 × 10 × 1 mm 3
1   mm
10   mm
532   nm
80   mm
20 μ m
z 0 = π ω 0 2 / λ
ω 0
LiNbO 3
S = 20 %
Δ n e
Δ n e
E z
Δ n e = 0.5 r 33 n e 3 E z .
0.5 MW / cm 2
LiNbO 3
Δ n e = 1.3 × 10 2
2.6 × 10 4
n e * = Δ n e / I ,
Δ n e
n e * = 2.6 × 10 2
5.2 × 10 4 cm 2 / MW
T ( z ) = 1 β I 0 ( 1 e α L ) 2 2 ( 1 + z 2 / z 0 2 ) α ,
I 0
( z = 0 )
2.7 × 10 3 cm / W
8.1 × 10 6 cm / W
0.5 MW / cm 2
LiNbO 3
0.5 MW / cm 2
2 MW / cm 2
2 MW / cm 2
LiNbO 3
532   nm
Δ n e
8.1 × 10 6 cm / W
2.6 × 10 4
Δ n e
LiNbO 3
LiNbO 3
Δ n e
LiNbO 3
LiNbO 3
LiNbO 3
LiNbO 3
LiNbO 3
0.5 MW / cm 2
LiNbO 3
LiNbO 3
0.5 MW / cm 2
0.5 MW / cm 2
2 MW / cm 2

Metrics