Abstract

An optical dataset was collected on a mooring in the Santa Barbara Channel. Radiative transfer modeling and statistical analyses were employed to investigate sources of variability of in situ remote sensing reflectance [rrs(λ,4  m)] and the fQ ratio. It was found that the variability of inherent optical properties and the slope of the particle size distribution (ξ) were strongly related to the variability of rrs(λ,4  m). The variability of fQ was strongly affected by particle type characteristics. A semianalytical radiative transfer model was applied and effects of variable particle characteristics on optical closure were evaluated. Closure was best achieved in waters composed of a mixture of biogenic and minerogenic particles.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. W. Preisendorfer, Hydrologic Optics, Vol. 1 (U.S. Department of Commerce, 1976).
  2. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  3. IOCCG, "Remote sensing of inherent optical properties: Fundamentals, tests of algorithms, and applications," in Reports of the International Ocean-Colour Coordinating Group, No. 5, Z.-P.Lee, ed. (IOCCG, 2006).
  4. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geophys. Res. 93, 10909-10924 (1988).
    [CrossRef]
  5. J. R. V. Zaneveld, "Remotely sensed reflectance and its dependence on vertical structure: a theoretical derivation," Appl. Opt. 21, 4146-4150 (1982).
    [CrossRef] [PubMed]
  6. K. Oubelkheir, L. A. Clementson, I. T. Webster, P. W. Ford, A. G. Dekker, L. C. Radke, and P. Daniel, "Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system," J. Geophys. Res. 111, C07021 (2006).
    [CrossRef]
  7. C. S. Roesler, M. J. Perry, and K. L. Carder, "Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters," Limnol. Oceanogr. 34, 1510-1523 (1989).
    [CrossRef]
  8. C. L. Gallegos and P. J. Neale, "Partitioning absorption in case 2 waters: discrimination of dissolved and particulate components," Appl. Opt. 41, 4220-4233 (2002).
    [CrossRef] [PubMed]
  9. O. Schofield, T. Bergmann, M. Oliver, A. Irwin, G. Kirkpatrick, W. P. Bissett, M. A. Moline, and C. Orrico, "Inverting inherent optical signatures in the nearshore coastal waters at the Long Term Ecosystem Observatory," J. Geophys. Res. 109, C12S04 (2004).
    [CrossRef]
  10. D. F. Millie, O. M. Schofield, G. J. Kirkpatrick, G. Johnsen, P. A. Tester, and B. T. Vinyard, "Detection of harmful algal blooms using photopigments and absorption signatures: A case study of the Florida red tide, Gymnodinium breve,"Limnol. Oceanogr. 42, 1240-1251 (1997).
    [CrossRef]
  11. G. Kirkpatrick, D. F. Millie, M. A. Moline, and O. Schofield, "Absorption-based discrimination of phytoplankton species in naturally mixed populations," Limnol. Oceanogr. 42, 467-471 (2000).
    [CrossRef]
  12. M. Behrenfeld and P. G. Falkowski, "A consumer's guide to phytoplankton primary productivity models," Limnol. Oceanogr. 42, 1479-1491 (1997).
    [CrossRef]
  13. M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, "Carbon-based ocean productivity and phytoplankton physiology from space," Global Biogeochem. Cycles 19, GB1006 (2005).
    [CrossRef]
  14. G. J. Kirkpatrick, C. Orrico, M. A. Moline, M. Oliver, and O. M. Schofield, "Continuous hyperspectral absorption measurements of colored dissolved organic material in aquatic systems," Appl. Opt. 42, 6564-6568 (2003).
    [CrossRef] [PubMed]
  15. M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Res. 106, 14129-14142 (2001).
    [CrossRef]
  16. E. Boss, M. S. Twardowski, and S. Herring, "Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution," Appl. Opt. 40, 4885-4893 (2001).
    [CrossRef]
  17. M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, "Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration," Limnol. Oceanogr. 48, 843-859 (2003).
    [CrossRef]
  18. E. Boss, D. Stramski, T. Bergmann, W. S. Pegau, and M. Lewis, "Why should we measure the optical backscattering coefficient?"Oceanogr. 17, 44-49 (2004a).
  19. E. Boss, W. S. Pegau, M. Lee, M. S. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, "The particulate backscattering ratio at LEO-15 and its use to study particle composition and distribution," J. Geophys. Res. 109, C01014 (2004b).
    [CrossRef]
  20. C. S. Roesler and E. Boss, "Ocean color inversion yields estimates of the spectral beam attenuation coefficient while removing constraints on particle backscattering spectra," Geophys. Res. Lett. 30, 1468-1471 (2003).
    [CrossRef]
  21. E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, G. C. Chang, and T. D. Dickey, "Particulate attenuation at the bottom boundary layer of a continental shelf," J. Geophys. Res. 106, 9509-9516 (2001).
    [CrossRef]
  22. C. D. Mobley, L. K. Sundman, and E. Boss, "Phase function effects on oceanic light fields," Appl. Opt. 41, 1035-1050 (2002).
    [CrossRef] [PubMed]
  23. M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramaniam, L. W. Harding, Jr., and Z. Ahmad, "Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure," Estuarine Coastal Shelf Sci. 68, 348-362 (2006).
    [CrossRef]
  24. T. J. Petzold, "Volume scattering functions for selected ocean waters," Scripps Institution of Oceanography Reference (Scripps Institution of Oceanography, 1972), pp. 72-78.
  25. A. H. Barnard, J. R. V. Zaneveld, and W. S. Pegau, "in situ determination of the remotely sensed reflectance and the absorption coefficient: closure and inversion," Appl. Opt. 38, 5108-5117 (1999).
    [CrossRef]
  26. H. R. Gordon and K. Ding, "Self-shading of in-water optical instruments," Limnol. Oceanogr. 37, 491-500 (1992).
    [CrossRef]
  27. J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, "Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range," Appl. Opt. 45, 5294-5309 (2006).
    [CrossRef] [PubMed]
  28. W. S. Pegau, D. Gray, and J. R. V. Zaneveld, "Absorption of visible and near-infrared light in water: the dependence on temperature and salinity," Appl. Opt. 36, 6035-6046 (1997).
    [CrossRef] [PubMed]
  29. J. R. V. Zaneveld, J. C. Kitchen, and C. C. Moore, "Scattering error correction of reflecting tube absorption meters," Proc. SPIE 2258, 44-55 (1994).
    [CrossRef]
  30. R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997).
    [CrossRef]
  31. T. S. Kostadinov, D. A. Siegel, S. Maritorena, and N. Guillocheau, "Ocean color observations and modeling for an optically complex site: Santa Barbara Channel, California, USA," J. Geophys. Res. 112, C07011 (2007).
    [CrossRef]
  32. W. J. Emery and R. E. Thomson, Data Analysis Methods in Physical Oceanography (Pergamon, 1997).
  33. L. Prieur and S. Sathyendranath, "An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,"Limnol. Oceanogr. 26, 671-689 (1981).
    [CrossRef]
  34. Z. P. Lee, K. L. Carder, and R. A. Arnone, "Deriving inherent optical properties from water color: a multi-band quasi-analytical algorithm for optically deep waters," Appl. Opt. 41, 5755-5772 (2002).
    [CrossRef] [PubMed]
  35. R. C. Smith and K. S. Baker, "Optical properties of the clearest natural waters," Appl. Opt. 20, 177-184 (1981).
    [CrossRef] [PubMed]
  36. H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).
  37. M. P. Otero and D. A. Siegel, "Spatial and temporal characteristics of sediment plumes and phytoplankton blooms in the Santa Barbara Channel," Deep-Sea Res. II 51, 1129-1139 (2004).
  38. D. A. Toole and D. A. Siegel, "Modes and mechanisms of ocean color variability in the Santa Barbara Channel," J. Geophys. Res. 106, 26985-27000 (2001).
    [CrossRef]
  39. G. C. Chang, A. H. Barnard, S. McLean, P. J. Egli, C. Moore, J. R. V. Zaneveld, T. D. Dickey, and A. Hanson, "in situ optical variability and relationships in the Santa Barbara Channel: implications for remote sensing," Appl. Opt. 45, 3593-3604 (2006).
    [CrossRef] [PubMed]
  40. A. Morel and B. Gentili, "Diffuse reflectance of oceanic waters. III. Implication of biodirectionality for the remote-sensing problem," Appl. Opt. 35, 4850-4862 (1996).
    [CrossRef] [PubMed]
  41. A. Morel, D. Antoine, and B. Gentili, "Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function," Appl. Opt. 41, 6289-6306 (2002).
    [CrossRef] [PubMed]
  42. H. Loisel and A. Morel, "Non-isotropy of the upward radiance field in typical coastal (Case 2) waters," Int. J. Remote Sens. 22, 275-295 (2001).
    [CrossRef]
  43. Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, "Hyperspectral remote sensing for shallow waters. I. A semianalytical model," Appl. Opt. 37, 6329-6338 (1998).
    [CrossRef]
  44. J. R. V. Zaneveld, "A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties," J. Geophys. Res. 100, 13135-13142 (1995).
    [CrossRef]
  45. A. Morel, "Optical properties of pure water and pure sea water," in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1-24.

2007 (1)

T. S. Kostadinov, D. A. Siegel, S. Maritorena, and N. Guillocheau, "Ocean color observations and modeling for an optically complex site: Santa Barbara Channel, California, USA," J. Geophys. Res. 112, C07011 (2007).
[CrossRef]

2006 (4)

K. Oubelkheir, L. A. Clementson, I. T. Webster, P. W. Ford, A. G. Dekker, L. C. Radke, and P. Daniel, "Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system," J. Geophys. Res. 111, C07021 (2006).
[CrossRef]

M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramaniam, L. W. Harding, Jr., and Z. Ahmad, "Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure," Estuarine Coastal Shelf Sci. 68, 348-362 (2006).
[CrossRef]

G. C. Chang, A. H. Barnard, S. McLean, P. J. Egli, C. Moore, J. R. V. Zaneveld, T. D. Dickey, and A. Hanson, "in situ optical variability and relationships in the Santa Barbara Channel: implications for remote sensing," Appl. Opt. 45, 3593-3604 (2006).
[CrossRef] [PubMed]

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, "Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range," Appl. Opt. 45, 5294-5309 (2006).
[CrossRef] [PubMed]

2005 (1)

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, "Carbon-based ocean productivity and phytoplankton physiology from space," Global Biogeochem. Cycles 19, GB1006 (2005).
[CrossRef]

2004 (4)

O. Schofield, T. Bergmann, M. Oliver, A. Irwin, G. Kirkpatrick, W. P. Bissett, M. A. Moline, and C. Orrico, "Inverting inherent optical signatures in the nearshore coastal waters at the Long Term Ecosystem Observatory," J. Geophys. Res. 109, C12S04 (2004).
[CrossRef]

E. Boss, D. Stramski, T. Bergmann, W. S. Pegau, and M. Lewis, "Why should we measure the optical backscattering coefficient?"Oceanogr. 17, 44-49 (2004a).

E. Boss, W. S. Pegau, M. Lee, M. S. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, "The particulate backscattering ratio at LEO-15 and its use to study particle composition and distribution," J. Geophys. Res. 109, C01014 (2004b).
[CrossRef]

M. P. Otero and D. A. Siegel, "Spatial and temporal characteristics of sediment plumes and phytoplankton blooms in the Santa Barbara Channel," Deep-Sea Res. II 51, 1129-1139 (2004).

2003 (3)

C. S. Roesler and E. Boss, "Ocean color inversion yields estimates of the spectral beam attenuation coefficient while removing constraints on particle backscattering spectra," Geophys. Res. Lett. 30, 1468-1471 (2003).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, "Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration," Limnol. Oceanogr. 48, 843-859 (2003).
[CrossRef]

G. J. Kirkpatrick, C. Orrico, M. A. Moline, M. Oliver, and O. M. Schofield, "Continuous hyperspectral absorption measurements of colored dissolved organic material in aquatic systems," Appl. Opt. 42, 6564-6568 (2003).
[CrossRef] [PubMed]

2002 (4)

2001 (5)

D. A. Toole and D. A. Siegel, "Modes and mechanisms of ocean color variability in the Santa Barbara Channel," J. Geophys. Res. 106, 26985-27000 (2001).
[CrossRef]

H. Loisel and A. Morel, "Non-isotropy of the upward radiance field in typical coastal (Case 2) waters," Int. J. Remote Sens. 22, 275-295 (2001).
[CrossRef]

E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, G. C. Chang, and T. D. Dickey, "Particulate attenuation at the bottom boundary layer of a continental shelf," J. Geophys. Res. 106, 9509-9516 (2001).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Res. 106, 14129-14142 (2001).
[CrossRef]

E. Boss, M. S. Twardowski, and S. Herring, "Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution," Appl. Opt. 40, 4885-4893 (2001).
[CrossRef]

2000 (1)

G. Kirkpatrick, D. F. Millie, M. A. Moline, and O. Schofield, "Absorption-based discrimination of phytoplankton species in naturally mixed populations," Limnol. Oceanogr. 42, 467-471 (2000).
[CrossRef]

1999 (1)

1998 (1)

1997 (4)

R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997).
[CrossRef]

W. S. Pegau, D. Gray, and J. R. V. Zaneveld, "Absorption of visible and near-infrared light in water: the dependence on temperature and salinity," Appl. Opt. 36, 6035-6046 (1997).
[CrossRef] [PubMed]

M. Behrenfeld and P. G. Falkowski, "A consumer's guide to phytoplankton primary productivity models," Limnol. Oceanogr. 42, 1479-1491 (1997).
[CrossRef]

D. F. Millie, O. M. Schofield, G. J. Kirkpatrick, G. Johnsen, P. A. Tester, and B. T. Vinyard, "Detection of harmful algal blooms using photopigments and absorption signatures: A case study of the Florida red tide, Gymnodinium breve,"Limnol. Oceanogr. 42, 1240-1251 (1997).
[CrossRef]

1996 (1)

1995 (1)

J. R. V. Zaneveld, "A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties," J. Geophys. Res. 100, 13135-13142 (1995).
[CrossRef]

1994 (1)

J. R. V. Zaneveld, J. C. Kitchen, and C. C. Moore, "Scattering error correction of reflecting tube absorption meters," Proc. SPIE 2258, 44-55 (1994).
[CrossRef]

1992 (1)

H. R. Gordon and K. Ding, "Self-shading of in-water optical instruments," Limnol. Oceanogr. 37, 491-500 (1992).
[CrossRef]

1989 (1)

C. S. Roesler, M. J. Perry, and K. L. Carder, "Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters," Limnol. Oceanogr. 34, 1510-1523 (1989).
[CrossRef]

1988 (1)

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geophys. Res. 93, 10909-10924 (1988).
[CrossRef]

1982 (1)

1981 (2)

L. Prieur and S. Sathyendranath, "An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,"Limnol. Oceanogr. 26, 671-689 (1981).
[CrossRef]

R. C. Smith and K. S. Baker, "Optical properties of the clearest natural waters," Appl. Opt. 20, 177-184 (1981).
[CrossRef] [PubMed]

Appl. Opt. (15)

R. C. Smith and K. S. Baker, "Optical properties of the clearest natural waters," Appl. Opt. 20, 177-184 (1981).
[CrossRef] [PubMed]

J. R. V. Zaneveld, "Remotely sensed reflectance and its dependence on vertical structure: a theoretical derivation," Appl. Opt. 21, 4146-4150 (1982).
[CrossRef] [PubMed]

W. S. Pegau, D. Gray, and J. R. V. Zaneveld, "Absorption of visible and near-infrared light in water: the dependence on temperature and salinity," Appl. Opt. 36, 6035-6046 (1997).
[CrossRef] [PubMed]

Z. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, "Hyperspectral remote sensing for shallow waters. I. A semianalytical model," Appl. Opt. 37, 6329-6338 (1998).
[CrossRef]

A. H. Barnard, J. R. V. Zaneveld, and W. S. Pegau, "in situ determination of the remotely sensed reflectance and the absorption coefficient: closure and inversion," Appl. Opt. 38, 5108-5117 (1999).
[CrossRef]

A. Morel and B. Gentili, "Diffuse reflectance of oceanic waters. III. Implication of biodirectionality for the remote-sensing problem," Appl. Opt. 35, 4850-4862 (1996).
[CrossRef] [PubMed]

R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997).
[CrossRef]

E. Boss, M. S. Twardowski, and S. Herring, "Shape of the particulate beam attenuation spectrum and its inversion to obtain the shape of the particulate size distribution," Appl. Opt. 40, 4885-4893 (2001).
[CrossRef]

C. D. Mobley, L. K. Sundman, and E. Boss, "Phase function effects on oceanic light fields," Appl. Opt. 41, 1035-1050 (2002).
[CrossRef] [PubMed]

C. L. Gallegos and P. J. Neale, "Partitioning absorption in case 2 waters: discrimination of dissolved and particulate components," Appl. Opt. 41, 4220-4233 (2002).
[CrossRef] [PubMed]

Z. P. Lee, K. L. Carder, and R. A. Arnone, "Deriving inherent optical properties from water color: a multi-band quasi-analytical algorithm for optically deep waters," Appl. Opt. 41, 5755-5772 (2002).
[CrossRef] [PubMed]

A. Morel, D. Antoine, and B. Gentili, "Bidirectional reflectance of oceanic waters: accounting for Raman emission and varying particle scattering phase function," Appl. Opt. 41, 6289-6306 (2002).
[CrossRef] [PubMed]

G. J. Kirkpatrick, C. Orrico, M. A. Moline, M. Oliver, and O. M. Schofield, "Continuous hyperspectral absorption measurements of colored dissolved organic material in aquatic systems," Appl. Opt. 42, 6564-6568 (2003).
[CrossRef] [PubMed]

G. C. Chang, A. H. Barnard, S. McLean, P. J. Egli, C. Moore, J. R. V. Zaneveld, T. D. Dickey, and A. Hanson, "in situ optical variability and relationships in the Santa Barbara Channel: implications for remote sensing," Appl. Opt. 45, 3593-3604 (2006).
[CrossRef] [PubMed]

J. M. Sullivan, M. S. Twardowski, J. R. V. Zaneveld, C. Moore, A. H. Barnard, P. L. Donaghay, and B. Rhoades, "Hyperspectral temperature and salt dependencies of absorption by water and heavy water in the 400-750 nm spectral range," Appl. Opt. 45, 5294-5309 (2006).
[CrossRef] [PubMed]

Deep-Sea Res. II (1)

M. P. Otero and D. A. Siegel, "Spatial and temporal characteristics of sediment plumes and phytoplankton blooms in the Santa Barbara Channel," Deep-Sea Res. II 51, 1129-1139 (2004).

Estuarine Coastal Shelf Sci. (1)

M. Tzortziou, J. R. Herman, C. L. Gallegos, P. J. Neale, A. Subramaniam, L. W. Harding, Jr., and Z. Ahmad, "Bio-optics of the Chesapeake Bay from measurements and radiative transfer closure," Estuarine Coastal Shelf Sci. 68, 348-362 (2006).
[CrossRef]

Geophys. Res. Lett. (1)

C. S. Roesler and E. Boss, "Ocean color inversion yields estimates of the spectral beam attenuation coefficient while removing constraints on particle backscattering spectra," Geophys. Res. Lett. 30, 1468-1471 (2003).
[CrossRef]

Global Biogeochem. Cycles (1)

M. J. Behrenfeld, E. Boss, D. A. Siegel, and D. M. Shea, "Carbon-based ocean productivity and phytoplankton physiology from space," Global Biogeochem. Cycles 19, GB1006 (2005).
[CrossRef]

Int. J. Remote Sens. (1)

H. Loisel and A. Morel, "Non-isotropy of the upward radiance field in typical coastal (Case 2) waters," Int. J. Remote Sens. 22, 275-295 (2001).
[CrossRef]

J. Geophys. Res. (9)

J. R. V. Zaneveld, "A theoretical derivation of the dependence of the remotely sensed reflectance of the ocean on the inherent optical properties," J. Geophys. Res. 100, 13135-13142 (1995).
[CrossRef]

D. A. Toole and D. A. Siegel, "Modes and mechanisms of ocean color variability in the Santa Barbara Channel," J. Geophys. Res. 106, 26985-27000 (2001).
[CrossRef]

T. S. Kostadinov, D. A. Siegel, S. Maritorena, and N. Guillocheau, "Ocean color observations and modeling for an optically complex site: Santa Barbara Channel, California, USA," J. Geophys. Res. 112, C07011 (2007).
[CrossRef]

K. Oubelkheir, L. A. Clementson, I. T. Webster, P. W. Ford, A. G. Dekker, L. C. Radke, and P. Daniel, "Using inherent optical properties to investigate biogeochemical dynamics in a tropical macrotidal coastal system," J. Geophys. Res. 111, C07021 (2006).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, "A semianalytic radiance model of ocean color," J. Geophys. Res. 93, 10909-10924 (1988).
[CrossRef]

O. Schofield, T. Bergmann, M. Oliver, A. Irwin, G. Kirkpatrick, W. P. Bissett, M. A. Moline, and C. Orrico, "Inverting inherent optical signatures in the nearshore coastal waters at the Long Term Ecosystem Observatory," J. Geophys. Res. 109, C12S04 (2004).
[CrossRef]

E. Boss, W. S. Pegau, W. D. Gardner, J. R. V. Zaneveld, A. H. Barnard, G. C. Chang, and T. D. Dickey, "Particulate attenuation at the bottom boundary layer of a continental shelf," J. Geophys. Res. 106, 9509-9516 (2001).
[CrossRef]

M. S. Twardowski, E. Boss, J. B. Macdonald, W. S. Pegau, A. H. Barnard, and J. R. V. Zaneveld, "A model for estimating bulk refractive index from the optical backscattering ratio and the implications for understanding particle composition in case I and case II waters," J. Geophys. Res. 106, 14129-14142 (2001).
[CrossRef]

E. Boss, W. S. Pegau, M. Lee, M. S. Twardowski, E. Shybanov, G. Korotaev, and F. Baratange, "The particulate backscattering ratio at LEO-15 and its use to study particle composition and distribution," J. Geophys. Res. 109, C01014 (2004b).
[CrossRef]

Limnol. Oceanogr. (7)

H. R. Gordon and K. Ding, "Self-shading of in-water optical instruments," Limnol. Oceanogr. 37, 491-500 (1992).
[CrossRef]

M. Babin, A. Morel, V. Fournier-Sicre, F. Fell, and D. Stramski, "Light scattering properties of marine particles in coastal and oceanic waters as related to the particle mass concentration," Limnol. Oceanogr. 48, 843-859 (2003).
[CrossRef]

D. F. Millie, O. M. Schofield, G. J. Kirkpatrick, G. Johnsen, P. A. Tester, and B. T. Vinyard, "Detection of harmful algal blooms using photopigments and absorption signatures: A case study of the Florida red tide, Gymnodinium breve,"Limnol. Oceanogr. 42, 1240-1251 (1997).
[CrossRef]

G. Kirkpatrick, D. F. Millie, M. A. Moline, and O. Schofield, "Absorption-based discrimination of phytoplankton species in naturally mixed populations," Limnol. Oceanogr. 42, 467-471 (2000).
[CrossRef]

M. Behrenfeld and P. G. Falkowski, "A consumer's guide to phytoplankton primary productivity models," Limnol. Oceanogr. 42, 1479-1491 (1997).
[CrossRef]

C. S. Roesler, M. J. Perry, and K. L. Carder, "Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters," Limnol. Oceanogr. 34, 1510-1523 (1989).
[CrossRef]

L. Prieur and S. Sathyendranath, "An optical classification of coastal and oceanic waters based on the specific spectral absorption curves of phytoplankton pigments, dissolved organic matter, and other particulate materials,"Limnol. Oceanogr. 26, 671-689 (1981).
[CrossRef]

Oceanogr. (1)

E. Boss, D. Stramski, T. Bergmann, W. S. Pegau, and M. Lewis, "Why should we measure the optical backscattering coefficient?"Oceanogr. 17, 44-49 (2004a).

Proc. SPIE (1)

J. R. V. Zaneveld, J. C. Kitchen, and C. C. Moore, "Scattering error correction of reflecting tube absorption meters," Proc. SPIE 2258, 44-55 (1994).
[CrossRef]

Other (7)

H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).

W. J. Emery and R. E. Thomson, Data Analysis Methods in Physical Oceanography (Pergamon, 1997).

A. Morel, "Optical properties of pure water and pure sea water," in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, eds. (Academic, 1974), pp. 1-24.

T. J. Petzold, "Volume scattering functions for selected ocean waters," Scripps Institution of Oceanography Reference (Scripps Institution of Oceanography, 1972), pp. 72-78.

R. W. Preisendorfer, Hydrologic Optics, Vol. 1 (U.S. Department of Commerce, 1976).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

IOCCG, "Remote sensing of inherent optical properties: Fundamentals, tests of algorithms, and applications," in Reports of the International Ocean-Colour Coordinating Group, No. 5, Z.-P.Lee, ed. (IOCCG, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(Color online) Left: Map of the Santa Barbara Channel showing the location of the CHARM (upper inset shows coastal California, USA; star indicates the location of the Santa Barbara Channel). Right: Schematic of the CHARM with 4 m instrumentation package. L u ( λ ) and E d ( λ ) = hyperspectral upwelling radiance and downwelling irradiance sensors, ac-s or ac-9 = hyperspectral or spectral absorption and attenuation meter, ECObb3 = spectral backscattering meter, ECOfl = fluorometer, Temp = temperature, and Sal = salinity. Depths of other sensor packages are indicated.

Fig. 2
Fig. 2

(Color online) An example of Hydrolight-simulated (squares) and radiometer-measured (circles). (a) L u ( λ , 4   m ) and (b) E d ( λ , 4   m ) indicating that measured IOPs and AOPs are self-consistent and of high quality. Data shown are from deployment 2.

Fig. 3
Fig. 3

Deployment 2 time series of measured (a) particulate scattering coefficient at 530 nm [ b p ( 530 ) ; blue] and single scattering albedo at 530 nm [ ω 0 ( 530 ) ; purple], (b) chlorophyll concentration (Chl), (c) particulate backscattering coefficient at 532 nm [ b b p ( 532 ) ] , (d) particulate backscattering ratio [ b b p ( 532 ) / b p ( 530 ) ] , (e) real refractive index of particles ( n p ; black) and particulate size distribution slope (ξ; orange) derived following Boss et al. [16], and (f) computed fQ ratio. The case II mean fQ value of 0.08 [41] is indicated. Vertical lines separate different optical water types, which are labeled (WT = water type) and described in Section 3. Spectral stackplots of hourly measured (g) total minus water absorption [ a p g ( λ ) ] (mean spectra of a p g ( λ ) and partitioned detrital plus gelbstoff and phytoplankton absorption [ a d g ( λ ) and a p h ( λ ) , respectively] are shown as thicker curves), (h) total minus water attenuation [ c p g ( λ ) ] , (i) b b p ( λ ) , and (j) remote sensing reflectance at 4 m [ r r s ( λ ) ] . Solid and dashed curves denote mean and standard deviation of spectra, respectively.

Fig. 4
Fig. 4

Same as Fig. 3 but for deployment 3.

Fig. 5
Fig. 5

Same as Fig. 3 but for deployment 4. Adv = advective event. Note that the red channel of the backscattering meter was damaged.

Fig. 6
Fig. 6

Same as Fig. 3 but for deployment 5. Note that the red channel of the backscattering meter was damaged.

Fig. 7
Fig. 7

(Color online) Example slope diagrams showing significant linear relationships, i.e., when the 95% confidence intervals of slopes (horizontal error bars) do not cross the zero line, between remote sensing reflectance [ r r s ( λ ) ] and in situ spectral (a) detrital plus gelbstoff absorption coefficient [ a d g ( λ ) ] , total backscattering coefficient [ b b t ( λ ) ] , and b b t ( λ ) / [ a t ( λ ) + b b t ( λ ) ] (inset shows a scatter plot of r r s ( λ ) versus b b t ( λ ) / [ a t ( λ ) + b b t ( λ ) ] at λ = 530 nm ); and (b) the slope of the particle size distribution (ξ) [inset shows a scatter plot of r r s ( λ ) versus ξ at λ = 530 nm ]; and between the fQ ratio and (c) backscattering ratio [ b b p ( λ ) / b p ( λ ) ] , real part of the index of refraction of particles ( n p ) [inset shows a scatter plot of ( f / Q ) ( λ ) versus n p at λ = 530 nm ], and b b t ( λ ) / [ a t ( λ ) + b b t ( λ ) ] , all during turbid inorganic periods. Correlations between the fQ ratio and (d) phytoplankton absorption coefficient [ a p h ( λ ) ] , b b t ( λ ) , and ξ during turbid organic periods. Slope diagrams between r r s ( λ ) and (e) b b p ( λ ) / b p ( λ ) and n p are shown for turbid mixed conditions and (f) single-scattering albedo [ ω 0 ( λ ) ] and a p h ( λ ) during turbid organic waters. Different optical and particle properties are labeled.

Fig. 8
Fig. 8

(Color online) Spectral (a) total absorption [ a t ( λ ) ] , (b) total attenuation [ c t ( λ ) ] , and (c) total backscattering [ b b t ( λ ) ] coefficients used as inputs into the radiative transfer model, Hydrolight. IOPs were varied from minerogenic-dominated waters (turbid inorganic; circles; measured) to Chl-dominated waters (turbid organic; diamonds; measured) by equal steps (simulated data). Hydrolight-derived (d) r r s HL ( λ ) and (e) fQ ratio computed using Eq. (5), Hydrolight-derived r r s HL ( λ ) , and measured IOPs at 4 m water depth. A dashed line indicates where f / Q = 0.08 sr 1 . Symbols for (d) and (e) are the same as those used for (a)–(c).

Fig. 9
Fig. 9

(Color online) (a), (c), (e), (g) Total absorption coefficient derived using the model presented by Lee et al. [34] [ a t der ( λ ) ] compared with a t ( λ ) measured at the CHARM site by an in situ ac-s [ a t meas ( λ ) ] . (b), (d), (f), (h) a t d e r ( λ ) / a t m e a s ( λ ) versus a t m e a s ( λ ) [plotted on a log scale; a solid line denotes a t d e r ( λ ) / a t m e a s ( λ ) = 1.0 and dashed lines indicate a t der ( λ ) / a t m e a s ( λ ) = 1.25 and 0.75] for (a), (b) turbid inorganic, (c), (d) turbid organic, (e), (f) turbid mixed, and (g), (h) relatively clear conditions. a t m e a s ( λ ) was interpolated to nine wavelengths. λ = 412 (crosses), 440 (squares), 488 (circles), 510 (pluses), 532 (triangles), and 555 nm (asterisks) (red wavelengths not shown).

Fig. 10
Fig. 10

(Color online) Same as Fig. 9 but for total backscattering coefficient at 470 (circles) and 532 nm (triangles) measured by an ECObb3.

Tables (3)

Tables Icon

Table 2 Mean, Median, Minimum, Maximum, Standard Deviation, and Variance of Various Optical Properties Measured during CHARM Deployments 2–5

Tables Icon

Table 3 Comparisons between Measured and Derived a t (λ) and b bt (λ) a

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

R r s ( λ ) = L w ( λ , 0 + ) / E d ( λ , 0 + ) ,
[ f ( λ ) / Q ( λ ) ] { b b t ( λ ) / [ a t ( λ ) + b b t ( λ ) ] } ,
ε = ( L u T L u M ) / L u T ,
= [ 1 exp ( k a t r ) ] ,
K L ( λ , z ) = d d z [ ln L u ( λ , z ) ] ,
1 Δ z ln L u ( λ , z 2 ) L u ( λ , z 1 ) ,
r r s ( λ , 4   m ) = L u ( λ , 4   m ) / E d ( λ , 4   m ) .
[ f ( λ ) / Q ( λ ) ] = { [ a t ( λ ) + b b t ( λ ) ] / b b t ( λ ) } [ r r s ( λ , 4   m ) ] .
n p = 1 + ( b b p / b p ) 0.5377 + 0.4867 ( γ ) 2 [ 1.4676 + 2.2950 ( γ ) 2 + 2.3113 ( γ ) 4 ] ,
ω 0 ( λ ) = b p ( λ ) / c p g ( λ )
[ b b t / ( a t + b b t ) ] = { g 0 + [ g 0 2 + 4 g 1 r r s ] 1 / 2 } / ( 2 g 1 )
b b t ( λ ) = b b w ( λ ) + b b p ( 555 ) ( 555 / λ ) η ,
η = 2.2 ( 1 1.2 exp { 0.9 [ r r s ( 440 ) / r r s ( 555 ) ] } ) .

Metrics