Abstract

Whispering-gallery modes (WGMs) in a zeolite cylinder have been effectively coupled with a low-loss fiber taper. The fiber transmission spectrum directly shows the WGM distribution, which agrees well with the theoretical prediction based on geometric optics. Due to other scattering and absorbing mechanisms, the measured quality factors of the WGMs are limited to approximately 800. This result shows that the fiber taper provides a powerful tool for coupling WGMs of a zeolite cylinder, and this taper-coupled zeolite can be a potential microcavity system for the cavity quantum electrodynamics and the microlaser.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, "Ultimate Q of optical microsphere resonators," Opt. Lett. 21, 453-455 (1996).
    [CrossRef] [PubMed]
  2. K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
    [CrossRef] [PubMed]
  3. V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, "Very low threshold whispering-gallery-mode microsphere laser," Phys. Rev. Lett. 54, 1777-1780 (1996).
  4. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
    [CrossRef] [PubMed]
  5. T. Bilici, S. Isci, A. Kurt, and A. Serpenguzel, "Microsphere-based channel dropping filter with an integrated photodetector," IEEE Photon Technol. Lett. 16, 476-478 (2004).
    [CrossRef]
  6. A. B. Matsko and V. S. Ilchenko, "Optical resonators with whispering-gallery Modes-part I: basics," IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).
    [CrossRef] [PubMed]
  7. Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, "Realizing quantum controlled phase flip through cavity QED," Phys. Rev. A 70, 042314 (2004).
    [CrossRef]
  8. Y. F. Xiao, Z. F. Han, and G. C. Guo, "Quantum computation without strict strong coupling on a silicon chip," Phys. Rev. A 73, 052324 (2006).
    [CrossRef]
  9. W. Yao, R. B. Liu, and L. J. Sham, "Theory of control of the spin-photon interface for quantum networks," Phys. Rev. Lett. 95, 030504 (2005).
    [CrossRef] [PubMed]
  10. H. M. Tzeng, K. E. Wall, M. B. Long, and R. K. Chang, "Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances," Opt. Lett. 9, 499-501 (1984).
    [CrossRef] [PubMed]
  11. T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, "Demonstration of an erbium-doped microdisk laser on a silicon chip," Phys. Rev. A 74, 051802 (2006).
    [CrossRef]
  12. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
    [CrossRef] [PubMed]
  13. U. Vietze, O. Krauß, F. Laeri, G. Ihlein, F. Schüth, B. Limburg, and M. Abraham, "Zeolite-dye microlasers," Phys. Rev. Lett. 81, 4628-4631 (1998).
    [CrossRef]
  14. T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, "Whispering gallery modes in nanosized dielectric resonator with hexagonal cross section," Phys. Rev. Lett. 93, 103903 (2004).
    [CrossRef] [PubMed]
  15. C. W. Chen and Y. F. Chen, "Whispering gallery modes in highly hexagonal symmetric structures of SBA-1 mesoporous silica," Appl. Phys. Lett. 90, 071104 (2007).
    [CrossRef] [PubMed]
  16. J. V. Smith, "Topochemistry of zeolites and related materials. 1. Topology and geometry," Chem. Rev. 88, 149-182 (1988).
    [CrossRef] [PubMed]
  17. Z. M. Li, Z. K. Tang, H. J. Liu, N. Wang, C. T. Chan, R. Saito, S. Okada, G. D. Li, J. S. Chen, N. Nagasawa, and S. Tsuda, "Polarized absorption spectra of single-walled 4 Å carbon nanotubes aligned in channels of an AlPO4-5 single crystal," Phys. Rev. Lett. 87, 127401 (2001).
    [CrossRef] [PubMed]
  18. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, "Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper," Opt. Lett. 22, 1129-1131 (1997).
    [CrossRef] [PubMed]
  19. K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, "Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots," Appl. Phys. Lett. 86, 151106 (2005).
    [CrossRef]
  20. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip," Appl. Phys. Lett. 85, 6113-6115 (2004).
    [CrossRef]
  21. J. Wiersig, "Hexagonal dielectric resonators and microcrystal lasers," Phys. Rev. A 67, 023807 (2003).
    [CrossRef]
  22. I. Braun, G. Ihlein, F. Laeri, J. U. Nöckel, G. Schulz-Ekloff, F. Schüth, U. Vietze, Ö. Weiss, and D. Wöhrle, "Hexagonal microlasers based on organic dyes in nanoporous crystals," Appl. Phys. B 70, 335-343 (2000).
    [CrossRef]
  23. J. Wiersig, "Boundary element method for resonances in dielectric microcavities," J. Opt. A 5, 53-60 (2003).
    [CrossRef]
  24. T. Nobis and M. Grundmann, "Low-order whispering-gallery modes in hexagonal nanocavities," Phys. Rev. A 72, 063806 (2005).
    [CrossRef]

2007 (2)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

C. W. Chen and Y. F. Chen, "Whispering gallery modes in highly hexagonal symmetric structures of SBA-1 mesoporous silica," Appl. Phys. Lett. 90, 071104 (2007).
[CrossRef] [PubMed]

2006 (3)

T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, "Demonstration of an erbium-doped microdisk laser on a silicon chip," Phys. Rev. A 74, 051802 (2006).
[CrossRef]

A. B. Matsko and V. S. Ilchenko, "Optical resonators with whispering-gallery Modes-part I: basics," IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).
[CrossRef] [PubMed]

Y. F. Xiao, Z. F. Han, and G. C. Guo, "Quantum computation without strict strong coupling on a silicon chip," Phys. Rev. A 73, 052324 (2006).
[CrossRef]

2005 (3)

W. Yao, R. B. Liu, and L. J. Sham, "Theory of control of the spin-photon interface for quantum networks," Phys. Rev. Lett. 95, 030504 (2005).
[CrossRef] [PubMed]

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, "Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots," Appl. Phys. Lett. 86, 151106 (2005).
[CrossRef]

T. Nobis and M. Grundmann, "Low-order whispering-gallery modes in hexagonal nanocavities," Phys. Rev. A 72, 063806 (2005).
[CrossRef]

2004 (4)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip," Appl. Phys. Lett. 85, 6113-6115 (2004).
[CrossRef]

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, "Realizing quantum controlled phase flip through cavity QED," Phys. Rev. A 70, 042314 (2004).
[CrossRef]

T. Bilici, S. Isci, A. Kurt, and A. Serpenguzel, "Microsphere-based channel dropping filter with an integrated photodetector," IEEE Photon Technol. Lett. 16, 476-478 (2004).
[CrossRef]

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, "Whispering gallery modes in nanosized dielectric resonator with hexagonal cross section," Phys. Rev. Lett. 93, 103903 (2004).
[CrossRef] [PubMed]

2003 (4)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

J. Wiersig, "Hexagonal dielectric resonators and microcrystal lasers," Phys. Rev. A 67, 023807 (2003).
[CrossRef]

J. Wiersig, "Boundary element method for resonances in dielectric microcavities," J. Opt. A 5, 53-60 (2003).
[CrossRef]

2001 (1)

Z. M. Li, Z. K. Tang, H. J. Liu, N. Wang, C. T. Chan, R. Saito, S. Okada, G. D. Li, J. S. Chen, N. Nagasawa, and S. Tsuda, "Polarized absorption spectra of single-walled 4 Å carbon nanotubes aligned in channels of an AlPO4-5 single crystal," Phys. Rev. Lett. 87, 127401 (2001).
[CrossRef] [PubMed]

2000 (1)

I. Braun, G. Ihlein, F. Laeri, J. U. Nöckel, G. Schulz-Ekloff, F. Schüth, U. Vietze, Ö. Weiss, and D. Wöhrle, "Hexagonal microlasers based on organic dyes in nanoporous crystals," Appl. Phys. B 70, 335-343 (2000).
[CrossRef]

1998 (1)

U. Vietze, O. Krauß, F. Laeri, G. Ihlein, F. Schüth, B. Limburg, and M. Abraham, "Zeolite-dye microlasers," Phys. Rev. Lett. 81, 4628-4631 (1998).
[CrossRef]

1997 (1)

1996 (2)

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, "Ultimate Q of optical microsphere resonators," Opt. Lett. 21, 453-455 (1996).
[CrossRef] [PubMed]

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, "Very low threshold whispering-gallery-mode microsphere laser," Phys. Rev. Lett. 54, 1777-1780 (1996).

1988 (1)

J. V. Smith, "Topochemistry of zeolites and related materials. 1. Topology and geometry," Chem. Rev. 88, 149-182 (1988).
[CrossRef] [PubMed]

1984 (1)

Appl. Phys. B (1)

I. Braun, G. Ihlein, F. Laeri, J. U. Nöckel, G. Schulz-Ekloff, F. Schüth, U. Vietze, Ö. Weiss, and D. Wöhrle, "Hexagonal microlasers based on organic dyes in nanoporous crystals," Appl. Phys. B 70, 335-343 (2000).
[CrossRef]

Appl. Phys. Lett. (3)

C. W. Chen and Y. F. Chen, "Whispering gallery modes in highly hexagonal symmetric structures of SBA-1 mesoporous silica," Appl. Phys. Lett. 90, 071104 (2007).
[CrossRef] [PubMed]

K. Srinivasan, M. Borselli, T. J. Johnson, P. E. Barclay, O. Painter, A. Stintz, and S. Krishna, "Optical loss and lasing characteristics of high-quality-factor AlGaAs microdisk resonators with embedded quantum dots," Appl. Phys. Lett. 86, 151106 (2005).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip," Appl. Phys. Lett. 85, 6113-6115 (2004).
[CrossRef]

Chem. Rev. (1)

J. V. Smith, "Topochemistry of zeolites and related materials. 1. Topology and geometry," Chem. Rev. 88, 149-182 (1988).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron. (1)

A. B. Matsko and V. S. Ilchenko, "Optical resonators with whispering-gallery Modes-part I: basics," IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006).
[CrossRef] [PubMed]

IEEE Photon Technol. Lett. (1)

T. Bilici, S. Isci, A. Kurt, and A. Serpenguzel, "Microsphere-based channel dropping filter with an integrated photodetector," IEEE Photon Technol. Lett. 16, 476-478 (2004).
[CrossRef]

J. Opt. A (1)

J. Wiersig, "Boundary element method for resonances in dielectric microcavities," J. Opt. A 5, 53-60 (2003).
[CrossRef]

Nature (2)

K. J. Vahala, "Optical microcavities," Nature 424, 839-846 (2003).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, "Ultra-high-Q toroid microcavity on a chip," Nature 421, 925-928 (2003).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. A (5)

T. Nobis and M. Grundmann, "Low-order whispering-gallery modes in hexagonal nanocavities," Phys. Rev. A 72, 063806 (2005).
[CrossRef]

Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, "Realizing quantum controlled phase flip through cavity QED," Phys. Rev. A 70, 042314 (2004).
[CrossRef]

Y. F. Xiao, Z. F. Han, and G. C. Guo, "Quantum computation without strict strong coupling on a silicon chip," Phys. Rev. A 73, 052324 (2006).
[CrossRef]

T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, "Demonstration of an erbium-doped microdisk laser on a silicon chip," Phys. Rev. A 74, 051802 (2006).
[CrossRef]

J. Wiersig, "Hexagonal dielectric resonators and microcrystal lasers," Phys. Rev. A 67, 023807 (2003).
[CrossRef]

Phys. Rev. Lett. (5)

Z. M. Li, Z. K. Tang, H. J. Liu, N. Wang, C. T. Chan, R. Saito, S. Okada, G. D. Li, J. S. Chen, N. Nagasawa, and S. Tsuda, "Polarized absorption spectra of single-walled 4 Å carbon nanotubes aligned in channels of an AlPO4-5 single crystal," Phys. Rev. Lett. 87, 127401 (2001).
[CrossRef] [PubMed]

U. Vietze, O. Krauß, F. Laeri, G. Ihlein, F. Schüth, B. Limburg, and M. Abraham, "Zeolite-dye microlasers," Phys. Rev. Lett. 81, 4628-4631 (1998).
[CrossRef]

T. Nobis, E. M. Kaidashev, A. Rahm, M. Lorenz, and M. Grundmann, "Whispering gallery modes in nanosized dielectric resonator with hexagonal cross section," Phys. Rev. Lett. 93, 103903 (2004).
[CrossRef] [PubMed]

W. Yao, R. B. Liu, and L. J. Sham, "Theory of control of the spin-photon interface for quantum networks," Phys. Rev. Lett. 95, 030504 (2005).
[CrossRef] [PubMed]

V. Sandoghdar, F. Treussart, J. Hare, V. Lefevre-Seguin, J. M. Raimond, and S. Haroche, "Very low threshold whispering-gallery-mode microsphere laser," Phys. Rev. Lett. 54, 1777-1780 (1996).

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup of our taper-coupled zeolite microcavity. EDFA is the erbium-doped fiber amplifier used as a broadband light source in the experiment. OSA is the optical spectrum analyzer with resolution set to 0.2 nm . Insets (a) and (b) are pictures taken with monitoring CCD cameras horizontally and vertically, respectively.

Fig. 2
Fig. 2

(Color online) (a) Linear fitting of the resonant Re ( k R ) versus mode number with Re ( k R ) = ν ( m + m 0 ) . Here ν = 0.795 , m 0 = 1.855 . (b) Transmission spectrum. The dips representing WG modes are marked on it. Q 775 , R = 37 μm .

Fig. 3
Fig. 3

(Color online) (a) Linear fitting of the resonant Re ( k R ) versus mode number with Re ( k R ) = ν ( m + m 0 ) . Here ν = 0.714 , m 0 = 1.639 . (b) Transmission spectrum. The dips representing WG modes are marked on it. Q 450 , R = 46 μm .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Re ( k R ) = ν ( m + m 0 ) ,
Re ( k R ) Im ( k R ) = f ( n ) .

Metrics