Abstract

High-resolution long-time force measurements by optical tweezers are often limited by low- frequency (1/f) noise. A dual-trap technique is presented that can reduce such noise in the force signal. It incorporates a second trap (a reference trap) that probes the noise in the system and it is based upon the assumption that the low-frequency parts of the noise from the two traps are correlated. A subtraction of the low-frequency signal from the reference trap from the signal from the force measuring trap will therefore yield a net signal that is significantly less influenced by noise. It is shown that this dual-trap technique can reduce the noise in the force signal up to 60% depending on detection bandwidth.

© 2007 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measuring microscopic viscosity with optical tweezers as a confocal probe

Boaz A. Nemet and Mark Cronin-Golomb
Appl. Opt. 42(10) 1820-1832 (2003)

Minimum-variance Brownian motion control of an optically trapped probe

Yanan Huang, Zhipeng Zhang, and Chia-Hsiang Menq
Appl. Opt. 48(30) 5871-5880 (2009)

Calibrating optical tweezers with Bayesian inference

Maximilian U. Richly, Silvan Türkcan, Antoine Le Gall, Nicolas Fiszman, Jean-Baptiste Masson, Nathalie Westbrook, Karen Perronet, and Antigoni Alexandrou
Opt. Express 21(25) 31578-31590 (2013)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription