Abstract

The liquid core optical ring resonator (LCORR) has recently shown promise as a high-sensitivity label-free lab-on-a-chip biological–chemical sensor. We investigate experimentally and theoretically the temperature dependence of the LCORR to establish a noise baseline, which will enable us to implement a temperature stabilization mechanism to reduce the thermally induced noise and to improve the sensor detection limit. Our studies involve analysis of the thermo-optic and thermomechanical effects of fused silica and aluminosilicate glass as they impact LCORR performance. Both thick-walled and thin-walled LCORRs are investigated to elucidate the contribution of water in the core to the thermal response of the LCORRs. Theoretical calculations based on Mie theory are used to verify the experimental observations.  

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. M. White, H. Oveys, and X. Fan, "Liquid-core optical ring-resonator sensors," Opt. Lett. 31, 1319-1321 (2006).
    [CrossRef] [PubMed]
  2. I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. (to be published).
  3. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
    [CrossRef]
  4. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
    [CrossRef] [PubMed]
  5. N. M. Hanumegowda, I. M. White, H. Oveys, and X. Fan, "Label-free protease sensors based on optical microsphere resonators," Sensor Lett. 3, 315-319 (2005).
    [CrossRef]
  6. N. H. Hanumegowda, I. M. White, and X. Fan, "Aqueous mercuric ion detection with microsphere optical ring resonator sensors," Sens. Actuators B 120, 207-212 (2006).
  7. H. Zhu, J. Suter, I. M. White, and X. Fan, "Aptamer based microsphere biosensor for thrombin detection," Sensors 6, 785-795 (2006).
  8. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
  9. G. Cocorullo, F. G. Della Corte, I. Rendina, and P. M. Sarro, "Thermo-optic effect exploitation in silicon microstructures," Sens. Actuators A 71, 19-26 (1998).
    [CrossRef]
  10. D. Hohlfeld, M. Epmeier, and H. Zappe, "A thermally tunable, silicon based optical filter," Sens. Actuators A 103, 93-99 (2003).
    [CrossRef]
  11. G. J. Veldhuis, O. Parriaux, H. J. W. M. Hoekstra, and P. V. Lambeck, "Sensitivity enhancement in evanescent optical waveguide sensors," J. Lightwave Technol. 18, 677-682 (2000).
    [CrossRef]
  12. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  13. A. Michie, J. Canning, K. Lyytikainen, M. Aslund, and J. Digweed, "Temperature independent highly birefringent photonic crystal fiber," Opt. Express 12, 5160-5165 (2004).
    [CrossRef] [PubMed]
  14. G. Ghosh, "Temperature dispersion of refractive indexes in some silicate fiber glasses," IEEE Photon. Technol. Lett. 6, 431-433 (1994).
    [CrossRef]
  15. D. R. Linde, ed., The CRC Handbook of Chemistry and Physics, Version 2005 (CRC, 2005).
  16. J. H. Wray, "Refractive index of several glasses as a function of wavelength and temperature," J. Opt. Soc. Am. 59, 774-776 (1969).
    [CrossRef]
  17. J. M. Jewell, C. Askins, and I. D. Aggarwal, "Interferometric method for concurrent measurement of thermo-optic and thermal expansion coefficients," Appl. Opt. 30, 3656-3660 (1991).
    [CrossRef] [PubMed]
  18. G. Ghosh, M. Endo, and T. Iwasaki, "Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses," J. Lightwave Technol. 12, 1338-1342 (1994).
    [CrossRef]
  19. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
    [CrossRef]
  20. J. P. Longtin and C.-H. Fan, "Precision laser-based concentration and refractive index measurement of liquids," Microscale Thermophys. Eng. 2, 261-272 (1998).
    [CrossRef]

2006 (1)

2005 (1)

N. M. Hanumegowda, I. M. White, H. Oveys, and X. Fan, "Label-free protease sensors based on optical microsphere resonators," Sensor Lett. 3, 315-319 (2005).
[CrossRef]

2004 (1)

2003 (2)

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

D. Hohlfeld, M. Epmeier, and H. Zappe, "A thermally tunable, silicon based optical filter," Sens. Actuators A 103, 93-99 (2003).
[CrossRef]

2002 (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

2000 (1)

1998 (2)

G. Cocorullo, F. G. Della Corte, I. Rendina, and P. M. Sarro, "Thermo-optic effect exploitation in silicon microstructures," Sens. Actuators A 71, 19-26 (1998).
[CrossRef]

J. P. Longtin and C.-H. Fan, "Precision laser-based concentration and refractive index measurement of liquids," Microscale Thermophys. Eng. 2, 261-272 (1998).
[CrossRef]

1994 (2)

G. Ghosh, "Temperature dispersion of refractive indexes in some silicate fiber glasses," IEEE Photon. Technol. Lett. 6, 431-433 (1994).
[CrossRef]

G. Ghosh, M. Endo, and T. Iwasaki, "Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses," J. Lightwave Technol. 12, 1338-1342 (1994).
[CrossRef]

1991 (1)

1969 (1)

Aggarwal, I. D.

Arnold, S.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Askins, C.

Aslund, M.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

Braun, D.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Canning, J.

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, I. Rendina, and P. M. Sarro, "Thermo-optic effect exploitation in silicon microstructures," Sens. Actuators A 71, 19-26 (1998).
[CrossRef]

Corte, F. G. Della

G. Cocorullo, F. G. Della Corte, I. Rendina, and P. M. Sarro, "Thermo-optic effect exploitation in silicon microstructures," Sens. Actuators A 71, 19-26 (1998).
[CrossRef]

Digweed, J.

Endo, M.

G. Ghosh, M. Endo, and T. Iwasaki, "Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses," J. Lightwave Technol. 12, 1338-1342 (1994).
[CrossRef]

Epmeier, M.

D. Hohlfeld, M. Epmeier, and H. Zappe, "A thermally tunable, silicon based optical filter," Sens. Actuators A 103, 93-99 (2003).
[CrossRef]

Fan, C.-H.

J. P. Longtin and C.-H. Fan, "Precision laser-based concentration and refractive index measurement of liquids," Microscale Thermophys. Eng. 2, 261-272 (1998).
[CrossRef]

Fan, X.

I. M. White, H. Oveys, and X. Fan, "Liquid-core optical ring-resonator sensors," Opt. Lett. 31, 1319-1321 (2006).
[CrossRef] [PubMed]

N. M. Hanumegowda, I. M. White, H. Oveys, and X. Fan, "Label-free protease sensors based on optical microsphere resonators," Sensor Lett. 3, 315-319 (2005).
[CrossRef]

H. Zhu, J. Suter, I. M. White, and X. Fan, "Aptamer based microsphere biosensor for thrombin detection," Sensors 6, 785-795 (2006).

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).

N. H. Hanumegowda, I. M. White, and X. Fan, "Aqueous mercuric ion detection with microsphere optical ring resonator sensors," Sens. Actuators B 120, 207-212 (2006).

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. (to be published).

Ghosh, G.

G. Ghosh, M. Endo, and T. Iwasaki, "Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses," J. Lightwave Technol. 12, 1338-1342 (1994).
[CrossRef]

G. Ghosh, "Temperature dispersion of refractive indexes in some silicate fiber glasses," IEEE Photon. Technol. Lett. 6, 431-433 (1994).
[CrossRef]

Hanumegowda, N. H.

N. H. Hanumegowda, I. M. White, and X. Fan, "Aqueous mercuric ion detection with microsphere optical ring resonator sensors," Sens. Actuators B 120, 207-212 (2006).

Hanumegowda, N. M.

N. M. Hanumegowda, I. M. White, H. Oveys, and X. Fan, "Label-free protease sensors based on optical microsphere resonators," Sensor Lett. 3, 315-319 (2005).
[CrossRef]

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. (to be published).

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).

Hoekstra, H. J. W. M.

Hohlfeld, D.

D. Hohlfeld, M. Epmeier, and H. Zappe, "A thermally tunable, silicon based optical filter," Sens. Actuators A 103, 93-99 (2003).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

Iwasaki, T.

G. Ghosh, M. Endo, and T. Iwasaki, "Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses," J. Lightwave Technol. 12, 1338-1342 (1994).
[CrossRef]

Jewell, J. M.

Khoshsima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Lambeck, P. V.

Libchaber, A.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Linde, D. R.

D. R. Linde, ed., The CRC Handbook of Chemistry and Physics, Version 2005 (CRC, 2005).

Longtin, J. P.

J. P. Longtin and C.-H. Fan, "Precision laser-based concentration and refractive index measurement of liquids," Microscale Thermophys. Eng. 2, 261-272 (1998).
[CrossRef]

Lyytikainen, K.

Michie, A.

Okamoto, K.

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).

Oveys, H.

I. M. White, H. Oveys, and X. Fan, "Liquid-core optical ring-resonator sensors," Opt. Lett. 31, 1319-1321 (2006).
[CrossRef] [PubMed]

N. M. Hanumegowda, I. M. White, H. Oveys, and X. Fan, "Label-free protease sensors based on optical microsphere resonators," Sensor Lett. 3, 315-319 (2005).
[CrossRef]

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. (to be published).

Parriaux, O.

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).

Rendina, I.

G. Cocorullo, F. G. Della Corte, I. Rendina, and P. M. Sarro, "Thermo-optic effect exploitation in silicon microstructures," Sens. Actuators A 71, 19-26 (1998).
[CrossRef]

Sarro, P. M.

G. Cocorullo, F. G. Della Corte, I. Rendina, and P. M. Sarro, "Thermo-optic effect exploitation in silicon microstructures," Sens. Actuators A 71, 19-26 (1998).
[CrossRef]

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).

Suter, J.

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. (to be published).

H. Zhu, J. Suter, I. M. White, and X. Fan, "Aptamer based microsphere biosensor for thrombin detection," Sensors 6, 785-795 (2006).

Teraoka, I.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Veldhuis, G. J.

Vollmer, F.

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

White, I. M.

I. M. White, H. Oveys, and X. Fan, "Liquid-core optical ring-resonator sensors," Opt. Lett. 31, 1319-1321 (2006).
[CrossRef] [PubMed]

N. M. Hanumegowda, I. M. White, H. Oveys, and X. Fan, "Label-free protease sensors based on optical microsphere resonators," Sensor Lett. 3, 315-319 (2005).
[CrossRef]

H. Zhu, J. Suter, I. M. White, and X. Fan, "Aptamer based microsphere biosensor for thrombin detection," Sensors 6, 785-795 (2006).

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).

N. H. Hanumegowda, I. M. White, and X. Fan, "Aqueous mercuric ion detection with microsphere optical ring resonator sensors," Sens. Actuators B 120, 207-212 (2006).

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. (to be published).

Wray, J. H.

Zappe, H.

D. Hohlfeld, M. Epmeier, and H. Zappe, "A thermally tunable, silicon based optical filter," Sens. Actuators A 103, 93-99 (2003).
[CrossRef]

Zhu, H.

H. Zhu, J. Suter, I. M. White, and X. Fan, "Aptamer based microsphere biosensor for thrombin detection," Sensors 6, 785-795 (2006).

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. (to be published).

Zourob, M.

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. (to be published).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, "Protein detection by optical shift of a resonant microcavity," Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Biophys. J. (1)

F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, "Multiplexed DNA quantification by spectroscopic shift of two microsphere cavities," Biophys. J. 85, 1974-1979 (2003).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (1)

G. Ghosh, "Temperature dispersion of refractive indexes in some silicate fiber glasses," IEEE Photon. Technol. Lett. 6, 431-433 (1994).
[CrossRef]

J. Lightwave Technol. (2)

G. J. Veldhuis, O. Parriaux, H. J. W. M. Hoekstra, and P. V. Lambeck, "Sensitivity enhancement in evanescent optical waveguide sensors," J. Lightwave Technol. 18, 677-682 (2000).
[CrossRef]

G. Ghosh, M. Endo, and T. Iwasaki, "Temperature-dependent Sellmeier coefficients and chromatic dispersions for some optical fiber glasses," J. Lightwave Technol. 12, 1338-1342 (1994).
[CrossRef]

J. Opt. Soc. Am. (1)

Microscale Thermophys. Eng. (1)

J. P. Longtin and C.-H. Fan, "Precision laser-based concentration and refractive index measurement of liquids," Microscale Thermophys. Eng. 2, 261-272 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Sens. Actuators A (2)

G. Cocorullo, F. G. Della Corte, I. Rendina, and P. M. Sarro, "Thermo-optic effect exploitation in silicon microstructures," Sens. Actuators A 71, 19-26 (1998).
[CrossRef]

D. Hohlfeld, M. Epmeier, and H. Zappe, "A thermally tunable, silicon based optical filter," Sens. Actuators A 103, 93-99 (2003).
[CrossRef]

Sensor Lett. (1)

N. M. Hanumegowda, I. M. White, H. Oveys, and X. Fan, "Label-free protease sensors based on optical microsphere resonators," Sensor Lett. 3, 315-319 (2005).
[CrossRef]

Other (7)

N. H. Hanumegowda, I. M. White, and X. Fan, "Aqueous mercuric ion detection with microsphere optical ring resonator sensors," Sens. Actuators B 120, 207-212 (2006).

H. Zhu, J. Suter, I. M. White, and X. Fan, "Aptamer based microsphere biosensor for thrombin detection," Sensors 6, 785-795 (2006).

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).

D. R. Linde, ed., The CRC Handbook of Chemistry and Physics, Version 2005 (CRC, 2005).

I. M. White, H. Zhu, J. Suter, N. M. Hanumegowda, H. Oveys, M. Zourob, and X. Fan, "Refractometric sensors for lab-on-a-chip based on optical ring resonators," IEEE Sens. J. (to be published).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic of proposed two-dimensional LCORR sensor array. (b) Cross-sectional view of an LCORR sensor.

Fig. 2
Fig. 2

Intensity distribution of the second-order radial WGMs for two different fused-silica wall thicknesses shows that the wall needs to be sufficiently thin to expose the evanescent field to the core. Dashed lines show the interior and exterior surfaces of the LCORR. Refractive index: n 1 = 1.33 , n 2 = 1.45 , n 3 = 1.0 .

Fig. 3
Fig. 3

(a) Experimental setup. The aluminum foil covering provides a degree of thermal isolation. A Kanthal wire heating filament coils about the LCORR. The thermocouple is positioned within 1 mm of the coupling region defined by the fiber taper. The vertical line represents the coupling fiber. (b) Photograph of the setup with the LCORR and taper in place.

Fig. 4
Fig. 4

(a) Resonant mode shifts by Δ λ when the refractive index of the core changes. (b) Refractive index sensitivity measurement using diluted ethanol in water (concentrations shown in the figure) in a thin-walled fused-silica capillary with an OD of 100 μm . The baseline measurement is pure water. (c) Computed refractive indices versus spectral shift, where the slope is equal to refractive index sensitivity. Sensitivity in this example is 3.6 nm / RIU , corresponding to a wall thickness of 4.3 μm .

Fig. 5
Fig. 5

Example temperature step data for thin-walled aluminosilicate LCORR. The y axis represents a change from the lowest mode position.

Fig. 6
Fig. 6

Comparative results for four different LCORRs: thick-walled aluminosilicate ( ) , thin-walled aluminosilicate ( ) , thick-walled fused silica (■), and thin-walled fused silica ( ) , where the slope of the fitted lines indicates the spectral shift per degree parameter ( Δ λ / Δ T ) . Thick-walled LCORRs have wall thicknesses of approximately 8 μm , thin-walled LCORRs have wall thicknesses of approximately 4 μm .

Fig. 7
Fig. 7

Simulation of spectral response to temperature change for 100 μm OD thick-walled ( ) and thin-walled ( ) aluminosilicate, thick-walled ( ) and thin-walled ( ) fused silica, and zero-sensitivity fused silica ( ) and aluminosilicate (■) LCORRs using thereported thermal expansion coefficient, α, and the experimentally determined thermo-optic coefficient, κ. The values of the constants used are listed in Table 1.

Tables (1)

Tables Icon

Table 1 Derivation of κ from Experimental Results

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

2 π n eff r = m λ m , l ,
Δ λ λ = r T 1 r Δ T + n eff T 1 n eff Δ T .
r T 1 r = α ,
n eff = f ( n air , n core , n wall , t ) ,
n eff T = κ air n eff n air + κ core n eff n core + κ wall n eff n wall + α wall n eff t ,
κ air ( core , wall ) = n air ( core , wall ) T .
n eff n air o ( 1 ) ,    n eff n core o ( 1 ) ,
n eff n wall O ( 1 ) ,    n eff t o ( 1 ) ,
Δ λ λ = α Δ T + n eff n wall κ wall n eff Δ T ,
Δ λ λ = α Δ T + n eff n wall κ wall n eff Δ T + n eff n core κ core n eff Δ T
E m , l ( r ) = { A J m ( k 0 ( l ) n 1 r ) , ( r r 1 ) B J m ( k 0 ( l ) n 2 r ) + C H m ( 1 ) ( k 0 ( l ) n 2 r ) , ( r 1 r r 2 ) D H m ( 1 ) ( k 0 ( l ) n 3 r ) , ( r r 2 ) ,

Metrics