Abstract

A novel dynamic gain equalizer for flattening Er-doped fiber amplifiers based on a twisted long-period fiber grating (LPFG) induced by high-frequency CO2 laser pulses isreported for the first time to our knowledge. Experimental results show that its transverse-load sensitivity is up to 0.34dB/(g·mm1), while the twist ratio of the twisted LPFG is 20rad/m, which is 7 times higher than that of a torsion-free LPFG. In addition, it is found that the strong orientation dependence of the transverse-load sensitivity of the torsion-free LPFGreported previously has been weakened considerably. Therefore such a dynamic gain equalizer based on the unique transverse-load characteristics of the twisted LPFG provides a much larger adjustable range and makes packaging of the gain equalizer much easier. A demonstration has been carried out to flatten an Er-doped fiber amplifier to ±0.5dB over a 32nm bandwidth.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Maru, K. Tanaka, T. Chiba, H. Nonen, and H. Uetsuka, "Dynamic gain equalizer using proposed adjustment procedure for thermo-optic phase shifters under the influence of thermal crosstalk," J. Lightwave Technol. 22, 1523-1532 (2004).
    [CrossRef]
  2. R. Feced, C. Alegria, M. N. Zervas, and R. I. Laming, "Acousto-optic attenuation filters based on tapered optical fibers," IEEE J. Select. Top. Quantum Electron. 5, 1278-1288 (1999).
    [CrossRef]
  3. K. Suzuki, T. Kitoh, S. Suzuki, Y. Inoue, Y. Hibino, T. Shibata, A. Mori, and M. Shimizu, "PLC-based dynamic gain equalizer consisting of integrated Mach-Zehnder interferometers with C- and L-band equalizing range," Electron. Lett. 38, 1030-1031 (2002).
    [CrossRef]
  4. M. Barge, D. Battarel, and J. L. de Bougrenet de la Tocnaye, "A polymer-dispersed liquid crystal-based dynamic gain equalizer," J. Lightwave Technol. 23, 2531-2541 (2005).
    [CrossRef]
  5. S. P. Li, K. S. Chiang, and W. A. Gambling, "Dynamic gain flattening of an erbium-doped fiber amplifier using a high-birefringence fiber loop mirror," Optical Fiber Communication Conference and Exhibit (Optical Society of America, 2001), Vol. 2, paper TuA5.
  6. Y. J. Rao, T. Zhu, and Z. L. Ran, "An all-fiber dynamic gain equalizer based on a novel long period fiber grating written by high-frequency CO2 laser pulses," Chin. Phys. Lett. 19, 1822-1824 (2002).
    [CrossRef]
  7. Y. P. Wang, Y. J. Rao, Z. L. Ran , T. Zhu, and A. Z. Hu, "A novel tunable gain equalizer based on a long period fiber grating written by high-frequency CO2 laser pulses," IEEE Photon. Technol. Lett. 15, 251-253 (2003).
    [CrossRef]
  8. Y. J. Rao, A. Z. Hu, and Y. C. Niu, "A novel dynamic LPFG gain equalizer written in a bend-insensitive fiber," Opt. Commun. 244, 137-140 (2005).
    [CrossRef]

2005

Y. J. Rao, A. Z. Hu, and Y. C. Niu, "A novel dynamic LPFG gain equalizer written in a bend-insensitive fiber," Opt. Commun. 244, 137-140 (2005).
[CrossRef]

M. Barge, D. Battarel, and J. L. de Bougrenet de la Tocnaye, "A polymer-dispersed liquid crystal-based dynamic gain equalizer," J. Lightwave Technol. 23, 2531-2541 (2005).
[CrossRef]

2004

K. Maru, K. Tanaka, T. Chiba, H. Nonen, and H. Uetsuka, "Dynamic gain equalizer using proposed adjustment procedure for thermo-optic phase shifters under the influence of thermal crosstalk," J. Lightwave Technol. 22, 1523-1532 (2004).
[CrossRef]

2003

Y. P. Wang, Y. J. Rao, Z. L. Ran , T. Zhu, and A. Z. Hu, "A novel tunable gain equalizer based on a long period fiber grating written by high-frequency CO2 laser pulses," IEEE Photon. Technol. Lett. 15, 251-253 (2003).
[CrossRef]

2002

K. Suzuki, T. Kitoh, S. Suzuki, Y. Inoue, Y. Hibino, T. Shibata, A. Mori, and M. Shimizu, "PLC-based dynamic gain equalizer consisting of integrated Mach-Zehnder interferometers with C- and L-band equalizing range," Electron. Lett. 38, 1030-1031 (2002).
[CrossRef]

Y. J. Rao, T. Zhu, and Z. L. Ran, "An all-fiber dynamic gain equalizer based on a novel long period fiber grating written by high-frequency CO2 laser pulses," Chin. Phys. Lett. 19, 1822-1824 (2002).
[CrossRef]

1999

R. Feced, C. Alegria, M. N. Zervas, and R. I. Laming, "Acousto-optic attenuation filters based on tapered optical fibers," IEEE J. Select. Top. Quantum Electron. 5, 1278-1288 (1999).
[CrossRef]

Alegria, C.

R. Feced, C. Alegria, M. N. Zervas, and R. I. Laming, "Acousto-optic attenuation filters based on tapered optical fibers," IEEE J. Select. Top. Quantum Electron. 5, 1278-1288 (1999).
[CrossRef]

Barge, M.

Battarel, D.

Chiang, K. S.

S. P. Li, K. S. Chiang, and W. A. Gambling, "Dynamic gain flattening of an erbium-doped fiber amplifier using a high-birefringence fiber loop mirror," Optical Fiber Communication Conference and Exhibit (Optical Society of America, 2001), Vol. 2, paper TuA5.

Chiba, T.

K. Maru, K. Tanaka, T. Chiba, H. Nonen, and H. Uetsuka, "Dynamic gain equalizer using proposed adjustment procedure for thermo-optic phase shifters under the influence of thermal crosstalk," J. Lightwave Technol. 22, 1523-1532 (2004).
[CrossRef]

de Bougrenet de la Tocnaye, J. L.

Feced, R.

R. Feced, C. Alegria, M. N. Zervas, and R. I. Laming, "Acousto-optic attenuation filters based on tapered optical fibers," IEEE J. Select. Top. Quantum Electron. 5, 1278-1288 (1999).
[CrossRef]

Gambling, W. A.

S. P. Li, K. S. Chiang, and W. A. Gambling, "Dynamic gain flattening of an erbium-doped fiber amplifier using a high-birefringence fiber loop mirror," Optical Fiber Communication Conference and Exhibit (Optical Society of America, 2001), Vol. 2, paper TuA5.

Hibino, Y.

K. Suzuki, T. Kitoh, S. Suzuki, Y. Inoue, Y. Hibino, T. Shibata, A. Mori, and M. Shimizu, "PLC-based dynamic gain equalizer consisting of integrated Mach-Zehnder interferometers with C- and L-band equalizing range," Electron. Lett. 38, 1030-1031 (2002).
[CrossRef]

Hu, A. Z.

Y. J. Rao, A. Z. Hu, and Y. C. Niu, "A novel dynamic LPFG gain equalizer written in a bend-insensitive fiber," Opt. Commun. 244, 137-140 (2005).
[CrossRef]

Y. P. Wang, Y. J. Rao, Z. L. Ran , T. Zhu, and A. Z. Hu, "A novel tunable gain equalizer based on a long period fiber grating written by high-frequency CO2 laser pulses," IEEE Photon. Technol. Lett. 15, 251-253 (2003).
[CrossRef]

Inoue, Y.

K. Suzuki, T. Kitoh, S. Suzuki, Y. Inoue, Y. Hibino, T. Shibata, A. Mori, and M. Shimizu, "PLC-based dynamic gain equalizer consisting of integrated Mach-Zehnder interferometers with C- and L-band equalizing range," Electron. Lett. 38, 1030-1031 (2002).
[CrossRef]

Kitoh, T.

K. Suzuki, T. Kitoh, S. Suzuki, Y. Inoue, Y. Hibino, T. Shibata, A. Mori, and M. Shimizu, "PLC-based dynamic gain equalizer consisting of integrated Mach-Zehnder interferometers with C- and L-band equalizing range," Electron. Lett. 38, 1030-1031 (2002).
[CrossRef]

Laming, R. I.

R. Feced, C. Alegria, M. N. Zervas, and R. I. Laming, "Acousto-optic attenuation filters based on tapered optical fibers," IEEE J. Select. Top. Quantum Electron. 5, 1278-1288 (1999).
[CrossRef]

Li, S. P.

S. P. Li, K. S. Chiang, and W. A. Gambling, "Dynamic gain flattening of an erbium-doped fiber amplifier using a high-birefringence fiber loop mirror," Optical Fiber Communication Conference and Exhibit (Optical Society of America, 2001), Vol. 2, paper TuA5.

Maru, K.

K. Maru, K. Tanaka, T. Chiba, H. Nonen, and H. Uetsuka, "Dynamic gain equalizer using proposed adjustment procedure for thermo-optic phase shifters under the influence of thermal crosstalk," J. Lightwave Technol. 22, 1523-1532 (2004).
[CrossRef]

Mori, A.

K. Suzuki, T. Kitoh, S. Suzuki, Y. Inoue, Y. Hibino, T. Shibata, A. Mori, and M. Shimizu, "PLC-based dynamic gain equalizer consisting of integrated Mach-Zehnder interferometers with C- and L-band equalizing range," Electron. Lett. 38, 1030-1031 (2002).
[CrossRef]

Niu, Y. C.

Y. J. Rao, A. Z. Hu, and Y. C. Niu, "A novel dynamic LPFG gain equalizer written in a bend-insensitive fiber," Opt. Commun. 244, 137-140 (2005).
[CrossRef]

Nonen, H.

K. Maru, K. Tanaka, T. Chiba, H. Nonen, and H. Uetsuka, "Dynamic gain equalizer using proposed adjustment procedure for thermo-optic phase shifters under the influence of thermal crosstalk," J. Lightwave Technol. 22, 1523-1532 (2004).
[CrossRef]

Ran, Z. L.

Y. P. Wang, Y. J. Rao, Z. L. Ran , T. Zhu, and A. Z. Hu, "A novel tunable gain equalizer based on a long period fiber grating written by high-frequency CO2 laser pulses," IEEE Photon. Technol. Lett. 15, 251-253 (2003).
[CrossRef]

Y. J. Rao, T. Zhu, and Z. L. Ran, "An all-fiber dynamic gain equalizer based on a novel long period fiber grating written by high-frequency CO2 laser pulses," Chin. Phys. Lett. 19, 1822-1824 (2002).
[CrossRef]

Rao, Y. J.

Y. J. Rao, A. Z. Hu, and Y. C. Niu, "A novel dynamic LPFG gain equalizer written in a bend-insensitive fiber," Opt. Commun. 244, 137-140 (2005).
[CrossRef]

Y. P. Wang, Y. J. Rao, Z. L. Ran , T. Zhu, and A. Z. Hu, "A novel tunable gain equalizer based on a long period fiber grating written by high-frequency CO2 laser pulses," IEEE Photon. Technol. Lett. 15, 251-253 (2003).
[CrossRef]

Y. J. Rao, T. Zhu, and Z. L. Ran, "An all-fiber dynamic gain equalizer based on a novel long period fiber grating written by high-frequency CO2 laser pulses," Chin. Phys. Lett. 19, 1822-1824 (2002).
[CrossRef]

Shibata, T.

K. Suzuki, T. Kitoh, S. Suzuki, Y. Inoue, Y. Hibino, T. Shibata, A. Mori, and M. Shimizu, "PLC-based dynamic gain equalizer consisting of integrated Mach-Zehnder interferometers with C- and L-band equalizing range," Electron. Lett. 38, 1030-1031 (2002).
[CrossRef]

Shimizu, M.

K. Suzuki, T. Kitoh, S. Suzuki, Y. Inoue, Y. Hibino, T. Shibata, A. Mori, and M. Shimizu, "PLC-based dynamic gain equalizer consisting of integrated Mach-Zehnder interferometers with C- and L-band equalizing range," Electron. Lett. 38, 1030-1031 (2002).
[CrossRef]

Suzuki, K.

K. Suzuki, T. Kitoh, S. Suzuki, Y. Inoue, Y. Hibino, T. Shibata, A. Mori, and M. Shimizu, "PLC-based dynamic gain equalizer consisting of integrated Mach-Zehnder interferometers with C- and L-band equalizing range," Electron. Lett. 38, 1030-1031 (2002).
[CrossRef]

Suzuki, S.

K. Suzuki, T. Kitoh, S. Suzuki, Y. Inoue, Y. Hibino, T. Shibata, A. Mori, and M. Shimizu, "PLC-based dynamic gain equalizer consisting of integrated Mach-Zehnder interferometers with C- and L-band equalizing range," Electron. Lett. 38, 1030-1031 (2002).
[CrossRef]

Tanaka, K.

K. Maru, K. Tanaka, T. Chiba, H. Nonen, and H. Uetsuka, "Dynamic gain equalizer using proposed adjustment procedure for thermo-optic phase shifters under the influence of thermal crosstalk," J. Lightwave Technol. 22, 1523-1532 (2004).
[CrossRef]

Uetsuka, H.

K. Maru, K. Tanaka, T. Chiba, H. Nonen, and H. Uetsuka, "Dynamic gain equalizer using proposed adjustment procedure for thermo-optic phase shifters under the influence of thermal crosstalk," J. Lightwave Technol. 22, 1523-1532 (2004).
[CrossRef]

Wang, Y. P.

Y. P. Wang, Y. J. Rao, Z. L. Ran , T. Zhu, and A. Z. Hu, "A novel tunable gain equalizer based on a long period fiber grating written by high-frequency CO2 laser pulses," IEEE Photon. Technol. Lett. 15, 251-253 (2003).
[CrossRef]

Zervas, M. N.

R. Feced, C. Alegria, M. N. Zervas, and R. I. Laming, "Acousto-optic attenuation filters based on tapered optical fibers," IEEE J. Select. Top. Quantum Electron. 5, 1278-1288 (1999).
[CrossRef]

Zhu, T.

Y. P. Wang, Y. J. Rao, Z. L. Ran , T. Zhu, and A. Z. Hu, "A novel tunable gain equalizer based on a long period fiber grating written by high-frequency CO2 laser pulses," IEEE Photon. Technol. Lett. 15, 251-253 (2003).
[CrossRef]

Y. J. Rao, T. Zhu, and Z. L. Ran, "An all-fiber dynamic gain equalizer based on a novel long period fiber grating written by high-frequency CO2 laser pulses," Chin. Phys. Lett. 19, 1822-1824 (2002).
[CrossRef]

Chin. Phys. Lett.

Y. J. Rao, T. Zhu, and Z. L. Ran, "An all-fiber dynamic gain equalizer based on a novel long period fiber grating written by high-frequency CO2 laser pulses," Chin. Phys. Lett. 19, 1822-1824 (2002).
[CrossRef]

Electron. Lett.

K. Suzuki, T. Kitoh, S. Suzuki, Y. Inoue, Y. Hibino, T. Shibata, A. Mori, and M. Shimizu, "PLC-based dynamic gain equalizer consisting of integrated Mach-Zehnder interferometers with C- and L-band equalizing range," Electron. Lett. 38, 1030-1031 (2002).
[CrossRef]

IEEE J. Select. Top. Quantum Electron.

R. Feced, C. Alegria, M. N. Zervas, and R. I. Laming, "Acousto-optic attenuation filters based on tapered optical fibers," IEEE J. Select. Top. Quantum Electron. 5, 1278-1288 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

Y. P. Wang, Y. J. Rao, Z. L. Ran , T. Zhu, and A. Z. Hu, "A novel tunable gain equalizer based on a long period fiber grating written by high-frequency CO2 laser pulses," IEEE Photon. Technol. Lett. 15, 251-253 (2003).
[CrossRef]

J. Lightwave Technol.

K. Maru, K. Tanaka, T. Chiba, H. Nonen, and H. Uetsuka, "Dynamic gain equalizer using proposed adjustment procedure for thermo-optic phase shifters under the influence of thermal crosstalk," J. Lightwave Technol. 22, 1523-1532 (2004).
[CrossRef]

J. Lightwave Technol.

Opt. Commun.

Y. J. Rao, A. Z. Hu, and Y. C. Niu, "A novel dynamic LPFG gain equalizer written in a bend-insensitive fiber," Opt. Commun. 244, 137-140 (2005).
[CrossRef]

Other

S. P. Li, K. S. Chiang, and W. A. Gambling, "Dynamic gain flattening of an erbium-doped fiber amplifier using a high-birefringence fiber loop mirror," Optical Fiber Communication Conference and Exhibit (Optical Society of America, 2001), Vol. 2, paper TuA5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Transmission spectrum of the LPFG with a 0.4 mm period.

Fig. 2
Fig. 2

Experimental setup for testing temperature and transversal-load responses of twisted LPFG.

Fig. 3
Fig. 3

Temperature response for the torsion-free LPFG and the twisted LPFG.

Fig. 4
Fig. 4

Relationship between resonant-wavelength shift and circular orientation while the transversal load is 60 g · mm 1 .

Fig. 5
Fig. 5

Transverse-load characteristics of the torsion-free LPFG and the twisted LPFG.

Fig. 6
Fig. 6

Polarization-dependent loss of the twisted LPFG.

Fig. 7
Fig. 7

Typical gain profiles: (a) original gain spectrum; (b) flattened gain spectrum; (c) adjusted transmission spectrum of the twisted LPFG.

Metrics