Abstract

Monte Carlo simulations and experiments in tissue phantoms were used to empirically develop an analytical model that characterizes the reflectance spectrum in a turbid medium. The model extracts the optical properties (scattering and absorption coefficients) of the medium at small source-detector separations, for which the diffusion approximation is not valid. The accuracy of the model and the inversion algorithm were investigated and validated. Four fiber probe configurations were tested for which both the source and the detector fibers were tilted at a predetermined angle, with the fibers parallel to each other. This parallel-fiber geometry facilitates clinical endoscopic applications and ease of fabrication. Accurate extraction of tissue optical properties from in vivo spectral measurements could have potential applications in detecting, noninvasively and in real time, epithelial (pre)cancers.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. I. J. Bigio and J. R. Mourant, "Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy," Phys. Med. Biol. 42, 803-814 (1997).
    [CrossRef] [PubMed]
  2. O. A'Amar, R. D. Ley, and I. J. Bigio, "Comparison between ultraviolet-visible and near-infrared elastic scattering spectroscopy of chemically induced melanomas in an animal model," J. Biomed. Opt. 9, 1320-1326 (2004).
    [CrossRef] [PubMed]
  3. I. J. Bigio and S. G. Bown, "Spectroscopic sensing of cancer and cancer chemotherapy, current status of translational research," CancerBiol. Ther. 3, 259-267 (2004).
    [CrossRef]
  4. T. J. Farrell, M. S. Patterson, and B. C. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties in vivo,"Med. Phys. 19, 879-888 (1992).
    [CrossRef] [PubMed]
  5. A. Kienle and M. S. Patterson, "Improved solutions of the steady-state and the time-resolved diffusion equations for reflectance from a semi-infinite turbid medium," J. Opt. Soc. Am. A 14, 246-254 (1997).
    [CrossRef]
  6. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1991).
    [CrossRef]
  7. G. Zonios and A. Dimou, "Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties," Opt. Express 14, 8661-8674 (2006).
    [CrossRef] [PubMed]
  8. M. Johns, C. A. Giller, D. C. German, and H. Liu, "Determination of reduced scattering coefficient of biological tissue from a needle-like probe," Opt. Express 13, 4828-4842 (2005).
    [CrossRef] [PubMed]
  9. F. Bevilacqua and C. Depeursinge, "Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path," J. Opt. Soc. Am. A 16, 2935-2945 (1999).
    [CrossRef]
  10. A. Amelink, H. J. C. M. Sterenborg, M. P. L. Bard, and S. A. Burgers, "In vivo measurement of the optical properties of tissue by use of differential path-length spectroscopy," Opt. Lett. 29, 1087-1089 (2004).
    [CrossRef] [PubMed]
  11. A. Amelink and H. J. C. M. Sterenborg, "Measurement of the local optical properties of turbid media by differential path-length spectroscopy," Appl. Opt. 43, 3048-3054 (2004).
    [CrossRef] [PubMed]
  12. T. P. Moffitt and S. A. Prahl, "Sized-fiber reflectometry for measuring local optical properties," IEEE J. Sel. Top. Quantum Electron. 7, 952-958 (2001).
    [CrossRef]
  13. F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, "In vivo local determination of tissue optical properties: applications to human brain," Appl. Opt. 38, 4939-4950 (1999).
    [CrossRef]
  14. C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, "Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues," Opt. Lett. 26, 1335-1337 (2001).
    [CrossRef]
  15. C. K. Hayakawa, B. Y. Hill, J. S. You, F. Bevilacqua, J. Spanier, and V. Venugopalan, "Use of the delta-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media," Appl. Opt. 43, 4677-4684 (2004).
    [CrossRef] [PubMed]
  16. Q. Liu and N. Ramanujam, "Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra," Appl. Opt. 45, 4776-4790 (2006).
    [CrossRef] [PubMed]
  17. G. M. Palmer and N. Ramanujam, "A Monte Carlo based inverse model for calculating tissue optical properties, part I: theory and validation on synthetic phantoms," Appl. Opt. 45, 1062-1071 (2006).
    [CrossRef] [PubMed]
  18. G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "A Monte Carlo based inverse model for calculating tissue optical properties, part II: application to breast cancer diagnosis," Appl. Opt. 45, 1072-1078 (2006).
    [CrossRef] [PubMed]
  19. T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. Durkin, and M. N. Ediger, "Reflectance-based determination of optical properties in highly attenuating tissue," J. Biomed. Opt. 8, 206-215 (2003).
    [CrossRef] [PubMed]
  20. G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, "Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,"Appl. Opt. 38, 6628-6637 (1999).
    [CrossRef]
  21. J. Sun, K. Fu, A. Wang, A. W. H. Lin, U. Utzinger, and R. Drezek, "Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements," Appl. Opt. 45, 8152-8162 (2006).
    [CrossRef] [PubMed]
  22. U. Utzinger and R. Richards-Kortum, "Fiber optic probes for biomedical optical spectroscopy," J. Biomed. Opt. 8, 121-147 (2003).
    [CrossRef] [PubMed]
  23. A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, "Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance," J. Biomed. Opt. 7, 388-397 (2002).
    [CrossRef] [PubMed]
  24. C. Xhu, Q. Liu, and N. Ramanujam, "Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation," J. Biomed. Opt. 8, 237-247 (2003).
    [CrossRef]
  25. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, "Multiple-fiber probe design for fluorescence spectroscopy in tissue," Appl. Opt. 41, 4712-4721 (2002).
    [CrossRef] [PubMed]
  26. A. Wang, J. Bender, U. Utzinger, and R. Drezek, "Depth-sensitive reflectance measurements using obliquely oriented fiber probes," J. Biomed. Opt. 10, 044017 (2005).
    [CrossRef] [PubMed]
  27. L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, "Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms," Appl. Opt. 43, 1308-1319 (2004).
    [CrossRef] [PubMed]
  28. J. Pfefer, A. Agrawal, and R. Drezek, "Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy," J. Biomed. Opt. 10, 044016 (2005).
    [CrossRef] [PubMed]
  29. S. P. Lin, L. Wang, S. L. Jacques, and F. K. Tittel, "Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry," Appl. Opt. 36, 136-143 (1997).
    [CrossRef] [PubMed]
  30. D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, "Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma," Appl. Opt. 44, 4291-4305 (2005).
    [CrossRef] [PubMed]
  31. S. L. Jacques and L. Wang, "Monte Carlo modeling of light transport in tissue," in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Plenum, 1995), pp. 73-100.
  32. L. H. Wang, S. L. Jacques, and L. Zheng, "MCML: Monte-Carlo modeling of light transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
    [CrossRef] [PubMed]
  33. M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, "A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy," Phys. Med. Biol. 38, 1859-1876 (1993).
    [CrossRef] [PubMed]
  34. L. G. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941).
    [CrossRef]
  35. P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, "In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering and phase function properties," J. Biomed. Opt. 8, 495-503 (2003).
    [CrossRef] [PubMed]
  36. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Germet, "Optical properties of Intralipid: a phantom medium for light propagation studies," Lasers Surg. Med. 12, 510-519 (1992).
    [CrossRef] [PubMed]
  37. M. G. Nichols, E. L. Hull, and T. H. Foster, "Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems," Appl. Opt. 36, 93-104 (1997).
    [CrossRef] [PubMed]
  38. M. Firbank and D. T. Delpy, "A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy," Phys. Med. Biol. 38, 847-853 (1993).
    [CrossRef]
  39. W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
    [CrossRef]
  40. A. Sassaroli and S. Fantini, "Comment on the modified Beer-Lambert law for scattering media," Phys. Med. Biol. 49, N255-N257 (2004).
    [CrossRef] [PubMed]
  41. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  42. J. R. Mourant, J. Boyer, A. H. Hielscher, and I. J. Bigio, "Influence of the phase function on light transport measurements in turbid media performed with small source-detector separations," Opt. Lett. 21, 546-548 (1996).
    [CrossRef] [PubMed]
  43. M. Canpolat and J. R. Mourant, "High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue," Phys. Med. Biol. 45, 1127-1140 (2000).
    [CrossRef] [PubMed]
  44. M. Canpolat and J. R. Mourant, "Particle size analysis of turbid media with a single optical fiber in contact with the medium to deliver and detect white light," Appl. Opt. 40, 3792-3799 (2001).
    [CrossRef]
  45. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, "Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution," Phys. Rev. Lett. 80, 627-630 (1998).
    [CrossRef]
  46. A. Dunn and D. Boas, "Transport-based image reconstruction in turbid media with small source-detector separations," Opt. Lett. 25, 1777-1779 (2000).
    [CrossRef]
  47. P. R. Bargo, S. A. Prahl, and S. L. Jacques, "Collection efficiency of single optical fiber in turbid media," Appl. Opt. 42, 3187-3197 (2003).
    [CrossRef] [PubMed]
  48. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Appl. Opt. 37, 3586-3593 (1998).
    [CrossRef]

2006 (5)

2005 (4)

2004 (7)

2003 (5)

P. R. Bargo, S. A. Prahl, and S. L. Jacques, "Collection efficiency of single optical fiber in turbid media," Appl. Opt. 42, 3187-3197 (2003).
[CrossRef] [PubMed]

U. Utzinger and R. Richards-Kortum, "Fiber optic probes for biomedical optical spectroscopy," J. Biomed. Opt. 8, 121-147 (2003).
[CrossRef] [PubMed]

C. Xhu, Q. Liu, and N. Ramanujam, "Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation," J. Biomed. Opt. 8, 237-247 (2003).
[CrossRef]

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, "In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering and phase function properties," J. Biomed. Opt. 8, 495-503 (2003).
[CrossRef] [PubMed]

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. Durkin, and M. N. Ediger, "Reflectance-based determination of optical properties in highly attenuating tissue," J. Biomed. Opt. 8, 206-215 (2003).
[CrossRef] [PubMed]

2002 (2)

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, "Multiple-fiber probe design for fluorescence spectroscopy in tissue," Appl. Opt. 41, 4712-4721 (2002).
[CrossRef] [PubMed]

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, "Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance," J. Biomed. Opt. 7, 388-397 (2002).
[CrossRef] [PubMed]

2001 (3)

2000 (2)

M. Canpolat and J. R. Mourant, "High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue," Phys. Med. Biol. 45, 1127-1140 (2000).
[CrossRef] [PubMed]

A. Dunn and D. Boas, "Transport-based image reconstruction in turbid media with small source-detector separations," Opt. Lett. 25, 1777-1779 (2000).
[CrossRef]

1999 (3)

1998 (2)

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, "Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution," Phys. Rev. Lett. 80, 627-630 (1998).
[CrossRef]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Appl. Opt. 37, 3586-3593 (1998).
[CrossRef]

1997 (4)

1996 (1)

1995 (1)

L. H. Wang, S. L. Jacques, and L. Zheng, "MCML: Monte-Carlo modeling of light transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

1993 (2)

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, "A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy," Phys. Med. Biol. 38, 1859-1876 (1993).
[CrossRef] [PubMed]

M. Firbank and D. T. Delpy, "A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy," Phys. Med. Biol. 38, 847-853 (1993).
[CrossRef]

1992 (2)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Germet, "Optical properties of Intralipid: a phantom medium for light propagation studies," Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, and B. C. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties in vivo,"Med. Phys. 19, 879-888 (1992).
[CrossRef] [PubMed]

1991 (1)

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1991).
[CrossRef]

1990 (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

1941 (1)

L. G. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941).
[CrossRef]

Appl. Opt. (16)

S. P. Lin, L. Wang, S. L. Jacques, and F. K. Tittel, "Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry," Appl. Opt. 36, 136-143 (1997).
[CrossRef] [PubMed]

J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, "Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics," Appl. Opt. 37, 3586-3593 (1998).
[CrossRef]

F. Bevilacqua, D. Piguet, P. Marquet, J. D. Gross, B. J. Tromberg, and C. Depeursinge, "In vivo local determination of tissue optical properties: applications to human brain," Appl. Opt. 38, 4939-4950 (1999).
[CrossRef]

G. Zonios, L. T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, "Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,"Appl. Opt. 38, 6628-6637 (1999).
[CrossRef]

M. G. Nichols, E. L. Hull, and T. H. Foster, "Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems," Appl. Opt. 36, 93-104 (1997).
[CrossRef] [PubMed]

M. Canpolat and J. R. Mourant, "Particle size analysis of turbid media with a single optical fiber in contact with the medium to deliver and detect white light," Appl. Opt. 40, 3792-3799 (2001).
[CrossRef]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, "Multiple-fiber probe design for fluorescence spectroscopy in tissue," Appl. Opt. 41, 4712-4721 (2002).
[CrossRef] [PubMed]

P. R. Bargo, S. A. Prahl, and S. L. Jacques, "Collection efficiency of single optical fiber in turbid media," Appl. Opt. 42, 3187-3197 (2003).
[CrossRef] [PubMed]

L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, "Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms," Appl. Opt. 43, 1308-1319 (2004).
[CrossRef] [PubMed]

A. Amelink and H. J. C. M. Sterenborg, "Measurement of the local optical properties of turbid media by differential path-length spectroscopy," Appl. Opt. 43, 3048-3054 (2004).
[CrossRef] [PubMed]

C. K. Hayakawa, B. Y. Hill, J. S. You, F. Bevilacqua, J. Spanier, and V. Venugopalan, "Use of the delta-P1 approximation for recovery of optical absorption, scattering, and asymmetry coefficients in turbid media," Appl. Opt. 43, 4677-4684 (2004).
[CrossRef] [PubMed]

D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, "Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma," Appl. Opt. 44, 4291-4305 (2005).
[CrossRef] [PubMed]

G. M. Palmer and N. Ramanujam, "A Monte Carlo based inverse model for calculating tissue optical properties, part I: theory and validation on synthetic phantoms," Appl. Opt. 45, 1062-1071 (2006).
[CrossRef] [PubMed]

G. M. Palmer, C. Zhu, T. M. Breslin, F. Xu, K. W. Gilchrist, and N. Ramanujam, "A Monte Carlo based inverse model for calculating tissue optical properties, part II: application to breast cancer diagnosis," Appl. Opt. 45, 1072-1078 (2006).
[CrossRef] [PubMed]

Q. Liu and N. Ramanujam, "Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra," Appl. Opt. 45, 4776-4790 (2006).
[CrossRef] [PubMed]

J. Sun, K. Fu, A. Wang, A. W. H. Lin, U. Utzinger, and R. Drezek, "Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements," Appl. Opt. 45, 8152-8162 (2006).
[CrossRef] [PubMed]

Astrophys. J. (1)

L. G. Henyey and J. L. Greenstein, "Diffuse radiation in the galaxy," Astrophys. J. 93, 70-83 (1941).
[CrossRef]

CancerBiol. Ther. (1)

I. J. Bigio and S. G. Bown, "Spectroscopic sensing of cancer and cancer chemotherapy, current status of translational research," CancerBiol. Ther. 3, 259-267 (2004).
[CrossRef]

Comput. Methods Programs Biomed. (1)

L. H. Wang, S. L. Jacques, and L. Zheng, "MCML: Monte-Carlo modeling of light transport in multilayered tissues," Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. P. Moffitt and S. A. Prahl, "Sized-fiber reflectometry for measuring local optical properties," IEEE J. Sel. Top. Quantum Electron. 7, 952-958 (2001).
[CrossRef]

J. Biomed. Opt. (8)

T. J. Pfefer, L. S. Matchette, C. L. Bennett, J. A. Gall, J. N. Wilke, A. Durkin, and M. N. Ediger, "Reflectance-based determination of optical properties in highly attenuating tissue," J. Biomed. Opt. 8, 206-215 (2003).
[CrossRef] [PubMed]

U. Utzinger and R. Richards-Kortum, "Fiber optic probes for biomedical optical spectroscopy," J. Biomed. Opt. 8, 121-147 (2003).
[CrossRef] [PubMed]

A. Myakov, L. Nieman, L. Wicky, U. Utzinger, R. Richards-Kortum, and K. Sokolov, "Fiber optic probe for polarized reflectance spectroscopy in vivo: design and performance," J. Biomed. Opt. 7, 388-397 (2002).
[CrossRef] [PubMed]

C. Xhu, Q. Liu, and N. Ramanujam, "Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation," J. Biomed. Opt. 8, 237-247 (2003).
[CrossRef]

A. Wang, J. Bender, U. Utzinger, and R. Drezek, "Depth-sensitive reflectance measurements using obliquely oriented fiber probes," J. Biomed. Opt. 10, 044017 (2005).
[CrossRef] [PubMed]

J. Pfefer, A. Agrawal, and R. Drezek, "Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy," J. Biomed. Opt. 10, 044016 (2005).
[CrossRef] [PubMed]

O. A'Amar, R. D. Ley, and I. J. Bigio, "Comparison between ultraviolet-visible and near-infrared elastic scattering spectroscopy of chemically induced melanomas in an animal model," J. Biomed. Opt. 9, 1320-1326 (2004).
[CrossRef] [PubMed]

P. Thueler, I. Charvet, F. Bevilacqua, M. St. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, "In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering and phase function properties," J. Biomed. Opt. 8, 495-503 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

Lasers Surg. Med. (1)

S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Germet, "Optical properties of Intralipid: a phantom medium for light propagation studies," Lasers Surg. Med. 12, 510-519 (1992).
[CrossRef] [PubMed]

Med. Phys. (1)

T. J. Farrell, M. S. Patterson, and B. C. Wilson, "A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties in vivo,"Med. Phys. 19, 879-888 (1992).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Phys. Med. Biol. (6)

M. Canpolat and J. R. Mourant, "High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue," Phys. Med. Biol. 45, 1127-1140 (2000).
[CrossRef] [PubMed]

A. Sassaroli and S. Fantini, "Comment on the modified Beer-Lambert law for scattering media," Phys. Med. Biol. 49, N255-N257 (2004).
[CrossRef] [PubMed]

M. Hiraoka, M. Firbank, M. Essenpreis, M. Cope, S. R. Arridge, P. van der Zee, and D. T. Delpy, "A Monte Carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy," Phys. Med. Biol. 38, 1859-1876 (1993).
[CrossRef] [PubMed]

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, "The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy," Phys. Med. Biol. 44, 967-981 (1991).
[CrossRef]

I. J. Bigio and J. R. Mourant, "Ultraviolet and visible spectroscopies for tissue diagnostics: fluorescence spectroscopy and elastic-scattering spectroscopy," Phys. Med. Biol. 42, 803-814 (1997).
[CrossRef] [PubMed]

M. Firbank and D. T. Delpy, "A design for a stable and reproducible phantom for use in near infra-red imaging and spectroscopy," Phys. Med. Biol. 38, 847-853 (1993).
[CrossRef]

Phys. Rev. Lett. (1)

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, "Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution," Phys. Rev. Lett. 80, 627-630 (1998).
[CrossRef]

Other (2)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

S. L. Jacques and L. Wang, "Monte Carlo modeling of light transport in tissue," in Optical-Thermal Response of Laser Irradiated Tissue, A. J. Welch and M. J. C. van Gemert, eds. (Plenum, 1995), pp. 73-100.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Diagram of the fiber probe design used in both Monte Carlo simulations and experiments in tissue phantoms.

Fig. 2
Fig. 2

Normalized voxel visitation history of Monte Carlo simulations for the (a) 0° and (b) 45° fiber probe configuration. The dotted line depicts a depth of 300 μ m .

Fig. 3
Fig. 3

Absorption spectrum of Indigo Blue dye normalized to the peak at 610   nm .

Fig. 4
Fig. 4

Reflectance as a function of the reduced scattering coefficient for the 45° fiber probe configuration in a nonabsorbing medium obtained with (a) Monte Carlo simulations and (b) experiments in tissue phantoms.

Fig. 5
Fig. 5

Reflectance as a function of the absorption coefficient for the 45° fiber probe configuration obtained with (a) Monte Carlo simulations and (b) experiments in tissue phantoms.

Fig. 6
Fig. 6

Percentage variation of the reflectance as a function of the anisotropy value for the 0° fiber probe configuration obtained with Monte Carlo simulations.

Fig. 7
Fig. 7

(a) Angular scatter distribution of the HG and MHG phase function. (b) Percentage variation of the reflectance between the HG and MHG phase function as a function of the reduced scattering coefficient for the 0° and 45° fiber probe configuration obtained with Monte Carlo simulations.

Fig. 8
Fig. 8

(a) Absolute reflectance spectrum and model fit for a Monte Carlo simulation with a 45° fiber probe configuration. Actual and extracted (b) reduced scattering coefficient and (c) absorption coefficient.

Fig. 9
Fig. 9

(a) Relative reflectance spectrum and model fit for experiments in tissue phantoms with a 45° fiber probe configuration. Actual and extracted (b) reduced scattering coefficient and (c) absorption coefficient.

Tables (6)

Tables Icon

Table 1 Values for the Coefficients a and a 0 Obtained With Monte Carlo Simulations and Experiments in Tissue Phantoms With a 0°, 15°, 30°, and 45° Fiber Probe Configuration

Tables Icon

Table 2 Values for the Coefficient b Obtained With Monte Carlo Simulations and Experiments in Tissue Phantoms With a 0°, 15°, 30°, and 45° Fiber Probe Configuration

Tables Icon

Table 3 Values for the Coefficient c Obtained With Monte Carlo Simulations and Experiments in Tissue Phantoms With a 0°, 15°, 30°, and 45° Fiber Probe Configuration

Tables Icon

Table 4 Values for the Coefficients a , a 0 b , and c Obtained With Monte Carlo Simulations With the 0° and 45° Fiber Probe Configuration Under Different Conditions a

Tables Icon

Table 5 Mean and Standard Deviation Over 15 Measurements of the Absorption Coefficient Extracted From Experiments in Tissue Phantoms with a 0°, 15°, 30°, and 45° Fiber Probe Configuration at 610 nm a

Tables Icon

Table 6 Mean and Standard Deviation Over 15 Measurements of the Reduced Scattering Coefficient Extracted From Experiments in Tissue Phantoms With a 0°, 15°, 30°, and 45° Fiber Probe Configuration at 610 nm a

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

R A B S = I I 0 = i = 1 T P C exp ( μ a l i ) T P L ,
R P R E L ( λ ) = R P A B S ( λ ) R C A B S ( λ 0 ) = I P ( λ ) I 0 ( λ ) I 0 ( λ 0 ) I C ( λ 0 ) = I P ( λ ) I C ( λ 0 ) ,
R ( 0 ) = a μ s + a 0 .
R ( μ a ) = R ( 0 ) exp ( μ a L ) ,
L = b ( μ a μ s ) c ,
R ( μ a ) = ( a μ s + a 0 ) exp ( μ a b ( μ a μ s ) c ) .
PV = ( R 1 R 2 ) R 2 × 100.
p MHG ( θ , g HG , ξ ) = ξ p HG ( θ , g HG ) + ( 1 ξ ) 3 4 π cos 2 θ ,
μ s ( λ ) = d λ e .
μ a ( λ ) = f 1 ( f 2 ε H b O ( λ ) + ( 1 f 2 ) ε H b ( λ ) ) ,
R P R E L ( λ ) = R P A B S ( λ ) R C A B S ( λ 0 ) = R P A B S ( λ ) R C A B S ( λ 0 ) R C A B S ( λ 0 ) R C A B S ( λ ) R C A B S ( λ ) R C A B S ( λ 0 ) = R P A B S ( λ ) R C A B S ( λ ) R C R E L ( λ ) = I P ( λ ) I 0 ( λ ) I 0 ( λ ) I C ( λ ) a μ s C ( λ ) = I P ( λ ) I C ( λ ) a μ s C ( λ ) ,
μ a ( λ ) = f 1 ε dye ( λ ) ,

Metrics