Abstract

We describe the concept of Doppler asymmetric spatial heterodyne spectroscopy (DASH) and present a laboratory Doppler-shift measurement using an infrared laser line. DASH is a modification of spatial heterodyne spectroscopy optimized for high precision, high accuracy Doppler-shift measurements of atmospheric emission lines either from the ground or a satellite. We discuss DASH design considerations, field widening, thermal stability and tracking, noise propagation, advantages, and trade-offs. DASH interferometers do not require moving optical parts and can be built in rugged, compact packages, making them suitable for space flight and mobile ground instrumentation.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. W. A. Lahoz, R. Brugge, D. R. Jackson, S. Migliorini, R. Swinbank, D. Lary, and A. Lee, "An observing system simulation experiment to evaluate the scientific merit of the wind and ozone measurements from the future SWIFT instrument," Q. J. R. Meteorol. Soc. 131, 503-523 (2005).
    [CrossRef]
  2. C. R. Englert, J. M. Harlander, D. D. Babcock, M. H. Stevens, and D. E. Siskind, "Doppler asymmetric spatial heterodyne spectroscopy (DASH): an innovative concept for measuring winds in planetary atmospheres," Proc. SPIE 6303, 63030T (2006).
    [CrossRef]
  3. P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, "The high-resolution Doppler imager on the upper atmosphere research satellite," J. Geophys. Res. 98, 10713-10723 (1993).
    [CrossRef]
  4. T. L. Killeen, Q. Wu, S. C. Solomon, D. A. Ortland, W. R. Skinner, R. J. Niciejewski, and D. A. Gell, "TIMED Doppler interferometer: overview and recent results," J. Geophys. Res. 111, A10S01, doi:10.1029/2005JA011484 (2006).
    [CrossRef]
  5. G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, "WINDII, the wind imaging interferometer on the upper atmosphere research satellite," J. Geophys. Res. 98, 10725-10750 (1993).
    [CrossRef]
  6. D. L. Wu, M. J. Schwartz, J. W. Waters, V. Limpasuvan, Q. Wu, and T. L. Killeen, "Mesospheric Doppler wind measurements from aura microwave limb sounder (MLS)," Adv. Space Res. , doi:10.1016/j.asr.2007.06.014 (2007).
  7. W. A. Gault, S. Brown, A. Moise, D. Lang, G. Sellar, G. G. Shepherd, and J. Wimperis, "ERWIN: an E-region wind interferometer," Appl. Opt. 35, 2913-2922 (1996).
    [CrossRef] [PubMed]
  8. W. A. Gault, S. Sargoytchev, and G. G. Shepherd, "Divided-mirror scanning technique for a small Michelson interferometer," Proc. SPIE 2830, 15-18 (1996).
    [CrossRef]
  9. D. D. Babcock, G. G. Shepherd, W. E Ward, W. A. Gault, and S. Sargoytchev, "A prototype near-IR mesospheric imaging Michelson interferometer (MIMI) for atmospheric wind measurement," Eos Trans. Am. Geophys. Union 85, Abstract SA41A-1040 (2004).
  10. G. Thuillier and G. G. Shepherd, "Fully compensated Michelson interferometer of fixed path difference," Appl. Opt. 24, 1599-1603 (1985).
    [CrossRef] [PubMed]
  11. G. Thuillier and M. Herse, "Thermally stable field compensated Michelson interferometer for measurement of temperature and wind of the planetary atmospheres," Appl. Opt. 30, 1210-1220 (1991).
    [CrossRef] [PubMed]
  12. J. M. Harlander, R. J. Reynolds, and F. L. Roesler, "Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths," Astrophys. J. 396, 730-740 (1992).
    [CrossRef]
  13. J. M. Harlander, F. L. Roesler, C. R. Englert, J. G. Cardon, R. R. Conway, C. M. Brown, and J. Wimperis, "Robust monolithic ultraviolet interferometer for the SHIMMER instrument on STPSat-1," Appl. Opt. 42, 2829-2834 (2003).
    [CrossRef] [PubMed]
  14. C. R. Englert, J. M. Harlander, J. G. Cardon, and F. L. Roesler, "Correction of phase distortion in spatial heterodyne spectroscopy," Appl. Opt. 43, 6680-6687 (2004).
    [CrossRef]
  15. C. R. Englert and J. M. Harlander, "Flatfielding in spatial heterodyne spectroscopy," Appl. Opt. 45, 4583-4590 (2006).
    [CrossRef] [PubMed]
  16. J. M. Harlander, H. T. Tran, F. L. Roesler, K. Jaehnig, S. M. Seo, W. Sanders, and R. J. Reynolds, "Field widened spatial heterodyne spectroscopy: correcting for optical defects and new vacuum ultraviolet performance tests," Proc. SPIE 2280, 310-319 (1994).
    [CrossRef]
  17. W. E. Ward, W. A. Gault, N. Rowlands, S. Wang, G. G. Shepherd, I. C. McDade, J. C. McConnell, D. Michelangeli, and J. Caldwell, "An imaging interferometer for satellite observations of wind and temperature on Mars, the Dynamic Atmosphere Mars Observer (DYNAMO)," Proc. SPIE 4833, 226-236 (2002).
    [CrossRef]
  18. W. E. Ward, W. A. Gault, G. G. Shepherd, and N. Rowlands, "The waves Michelson interferometer: a visible/near-IR interferometer for observing middle atmosphere dynamics and constituents," Proc. SPIE 4540, 100-111 (2001).
    [CrossRef]

2007 (1)

D. L. Wu, M. J. Schwartz, J. W. Waters, V. Limpasuvan, Q. Wu, and T. L. Killeen, "Mesospheric Doppler wind measurements from aura microwave limb sounder (MLS)," Adv. Space Res. , doi:10.1016/j.asr.2007.06.014 (2007).

2006 (3)

C. R. Englert, J. M. Harlander, D. D. Babcock, M. H. Stevens, and D. E. Siskind, "Doppler asymmetric spatial heterodyne spectroscopy (DASH): an innovative concept for measuring winds in planetary atmospheres," Proc. SPIE 6303, 63030T (2006).
[CrossRef]

T. L. Killeen, Q. Wu, S. C. Solomon, D. A. Ortland, W. R. Skinner, R. J. Niciejewski, and D. A. Gell, "TIMED Doppler interferometer: overview and recent results," J. Geophys. Res. 111, A10S01, doi:10.1029/2005JA011484 (2006).
[CrossRef]

C. R. Englert and J. M. Harlander, "Flatfielding in spatial heterodyne spectroscopy," Appl. Opt. 45, 4583-4590 (2006).
[CrossRef] [PubMed]

2005 (1)

W. A. Lahoz, R. Brugge, D. R. Jackson, S. Migliorini, R. Swinbank, D. Lary, and A. Lee, "An observing system simulation experiment to evaluate the scientific merit of the wind and ozone measurements from the future SWIFT instrument," Q. J. R. Meteorol. Soc. 131, 503-523 (2005).
[CrossRef]

2004 (2)

C. R. Englert, J. M. Harlander, J. G. Cardon, and F. L. Roesler, "Correction of phase distortion in spatial heterodyne spectroscopy," Appl. Opt. 43, 6680-6687 (2004).
[CrossRef]

D. D. Babcock, G. G. Shepherd, W. E Ward, W. A. Gault, and S. Sargoytchev, "A prototype near-IR mesospheric imaging Michelson interferometer (MIMI) for atmospheric wind measurement," Eos Trans. Am. Geophys. Union 85, Abstract SA41A-1040 (2004).

2003 (1)

2002 (1)

W. E. Ward, W. A. Gault, N. Rowlands, S. Wang, G. G. Shepherd, I. C. McDade, J. C. McConnell, D. Michelangeli, and J. Caldwell, "An imaging interferometer for satellite observations of wind and temperature on Mars, the Dynamic Atmosphere Mars Observer (DYNAMO)," Proc. SPIE 4833, 226-236 (2002).
[CrossRef]

2001 (1)

W. E. Ward, W. A. Gault, G. G. Shepherd, and N. Rowlands, "The waves Michelson interferometer: a visible/near-IR interferometer for observing middle atmosphere dynamics and constituents," Proc. SPIE 4540, 100-111 (2001).
[CrossRef]

1996 (2)

W. A. Gault, S. Brown, A. Moise, D. Lang, G. Sellar, G. G. Shepherd, and J. Wimperis, "ERWIN: an E-region wind interferometer," Appl. Opt. 35, 2913-2922 (1996).
[CrossRef] [PubMed]

W. A. Gault, S. Sargoytchev, and G. G. Shepherd, "Divided-mirror scanning technique for a small Michelson interferometer," Proc. SPIE 2830, 15-18 (1996).
[CrossRef]

1994 (1)

J. M. Harlander, H. T. Tran, F. L. Roesler, K. Jaehnig, S. M. Seo, W. Sanders, and R. J. Reynolds, "Field widened spatial heterodyne spectroscopy: correcting for optical defects and new vacuum ultraviolet performance tests," Proc. SPIE 2280, 310-319 (1994).
[CrossRef]

1993 (2)

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, "WINDII, the wind imaging interferometer on the upper atmosphere research satellite," J. Geophys. Res. 98, 10725-10750 (1993).
[CrossRef]

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, "The high-resolution Doppler imager on the upper atmosphere research satellite," J. Geophys. Res. 98, 10713-10723 (1993).
[CrossRef]

1992 (1)

J. M. Harlander, R. J. Reynolds, and F. L. Roesler, "Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths," Astrophys. J. 396, 730-740 (1992).
[CrossRef]

1991 (1)

1985 (1)

Adv. Space Res. (1)

D. L. Wu, M. J. Schwartz, J. W. Waters, V. Limpasuvan, Q. Wu, and T. L. Killeen, "Mesospheric Doppler wind measurements from aura microwave limb sounder (MLS)," Adv. Space Res. , doi:10.1016/j.asr.2007.06.014 (2007).

Appl. Opt. (6)

Astrophys. J. (1)

J. M. Harlander, R. J. Reynolds, and F. L. Roesler, "Spatial heterodyne spectroscopy for the exploration of diffuse interstellar emission lines at far-ultraviolet wavelengths," Astrophys. J. 396, 730-740 (1992).
[CrossRef]

J. Geophys. Res. (3)

P. B. Hays, V. J. Abreu, M. E. Dobbs, D. A. Gell, H. J. Grassl, and W. R. Skinner, "The high-resolution Doppler imager on the upper atmosphere research satellite," J. Geophys. Res. 98, 10713-10723 (1993).
[CrossRef]

T. L. Killeen, Q. Wu, S. C. Solomon, D. A. Ortland, W. R. Skinner, R. J. Niciejewski, and D. A. Gell, "TIMED Doppler interferometer: overview and recent results," J. Geophys. Res. 111, A10S01, doi:10.1029/2005JA011484 (2006).
[CrossRef]

G. G. Shepherd, G. Thuillier, W. A. Gault, B. H. Solheim, C. Hersom, J. M. Alunni, J.-F. Brun, S. Brune, P. Charlot, L. L. Cogger, D.-L. Desaulniers, W. F. J. Evans, R. L. Gattinger, F. Girod, D. Harvie, R. H. Hum, D. J. W. Kendall, E. J. Llewellyn, R. P. Lowe, J. Ohrt, F. Pasternak, O. Peillet, I. Powell, Y. Rochon, W. E. Ward, R. H. Wiens, and J. Wimperis, "WINDII, the wind imaging interferometer on the upper atmosphere research satellite," J. Geophys. Res. 98, 10725-10750 (1993).
[CrossRef]

Proc. SPIE (5)

C. R. Englert, J. M. Harlander, D. D. Babcock, M. H. Stevens, and D. E. Siskind, "Doppler asymmetric spatial heterodyne spectroscopy (DASH): an innovative concept for measuring winds in planetary atmospheres," Proc. SPIE 6303, 63030T (2006).
[CrossRef]

J. M. Harlander, H. T. Tran, F. L. Roesler, K. Jaehnig, S. M. Seo, W. Sanders, and R. J. Reynolds, "Field widened spatial heterodyne spectroscopy: correcting for optical defects and new vacuum ultraviolet performance tests," Proc. SPIE 2280, 310-319 (1994).
[CrossRef]

W. E. Ward, W. A. Gault, N. Rowlands, S. Wang, G. G. Shepherd, I. C. McDade, J. C. McConnell, D. Michelangeli, and J. Caldwell, "An imaging interferometer for satellite observations of wind and temperature on Mars, the Dynamic Atmosphere Mars Observer (DYNAMO)," Proc. SPIE 4833, 226-236 (2002).
[CrossRef]

W. E. Ward, W. A. Gault, G. G. Shepherd, and N. Rowlands, "The waves Michelson interferometer: a visible/near-IR interferometer for observing middle atmosphere dynamics and constituents," Proc. SPIE 4540, 100-111 (2001).
[CrossRef]

W. A. Gault, S. Sargoytchev, and G. G. Shepherd, "Divided-mirror scanning technique for a small Michelson interferometer," Proc. SPIE 2830, 15-18 (1996).
[CrossRef]

Q. J. R. Meteorol. Soc. (1)

W. A. Lahoz, R. Brugge, D. R. Jackson, S. Migliorini, R. Swinbank, D. Lary, and A. Lee, "An observing system simulation experiment to evaluate the scientific merit of the wind and ozone measurements from the future SWIFT instrument," Q. J. R. Meteorol. Soc. 131, 503-523 (2005).
[CrossRef]

Other (1)

D. D. Babcock, G. G. Shepherd, W. E Ward, W. A. Gault, and S. Sargoytchev, "A prototype near-IR mesospheric imaging Michelson interferometer (MIMI) for atmospheric wind measurement," Eos Trans. Am. Geophys. Union 85, Abstract SA41A-1040 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Black: Interferogram of an infinitely narrow spectral line. Gray: Interferogram of a slightly Doppler-shifted, infinitely narrow spectral line. This figure shows that the high resolution information about the exact line position and therefore the Doppler shift of the line is contained at high optical path differences. At large OPDs, the predominant effect is a phase shift between the two fringe patterns that have slightly different frequencies.

Fig. 2
Fig. 2

Schematic of a non-field-widened DASH interferometer. The only difference between a conventional SHS interferometer and a DASH interferometer is the additional OPD offset ( 2 Δ d ) in one of the interferometer arms.

Fig. 3
Fig. 3

Thin black: Interferogram of a single, temperature broadened curve. The decreasing contrast for increasing OPD is due to the finite line width of the emission curve. Thin gray: Interferogram of slightly Doppler-shifted emission curve. Thick black: Difference between the two interferograms. The dotted vertical line indicates the OPD for which the envelope of the difference function is largest. Here, the measurement is most sensitive to the phase shift.

Fig. 4
Fig. 4

Schematic of field-widened DASH interferometer for the near-infrared (BS: beam splitter, G1∕2: gratings, P1∕2: field widening prisms). Field widening is obtained by placing fixed prisms in each interferometer arm. The thicker prism (P1) in the lower right arm is required to compensate for the larger path difference. The grating and prism angles are the same in each arm.

Fig. 5
Fig. 5

Schematic of the laboratory setup. The monochromatic signal from a laser diode is guided by an optical fiber through an optical isolator and collimated by a single lens. The collimated beam is transmitted by a beam splitter and a chopper wheel and reflected by retroreflecting tape on a spinning disk that is mounted at an angle with respect to the optical axis. The Doppler-shifted signal from the spinning disk returns back through the chopper and is reflected by the beam splitter and then coupled into an optical fiber that guides the signal to the collimator feeding the interferometer (see also Fig. 2). The chopper blade is also coated with retroreflecting tape so that a non-Doppler-shifted signal enters the interferometer when the chopper is closed.

Fig. 6
Fig. 6

Photographs of the laboratory setup showing the source and interferometer part; (a) shows the laser diode (LD) at the bottom center. The light from the laser is directed by an optical fiber to a beam splitter which is shown on the right of the inset (b). After being transmitted by this beam splitter, the signal is retroreflected either by the chopper wheel (C) or the spinning disk (SD), which imposes a Doppler shift to the incident beam. The returning beam is then reflected by the beam splitter and coupled into a fiber that feeds the interferometer via a collimating lens (L1). The interferometer is set up analogous to Fig. 2 with the two gratings, G1∕2, the beam splitter, BS, the exit optics, L2∕3, and the detector array, D.

Fig. 7
Fig. 7

Typical dark and flat-field corrected fringe image.

Fig. 8
Fig. 8

Top panel: One pixel row from a single dark, flat-field, and offset corrected fringe image for a monochromatic source (see Fig. 7). Middle panel: Fourier transform of the interferogram shown in the top panel. The real part is shown in black; the imaginary part is shown in gray. The boxcar isolation function is shown with a dotted line (see text). Bottom panel: Phase of the interferogram shown in the top panel.

Fig. 9
Fig. 9

Top panel: Time series of the average phase of a single interferogram row where the average phase of the first measurement in the series is subtracted from all subsequent measurements. A periodic phase shift of 0.05   rad caused by the chopped signal can clearly be seen in addition to a drift, which we attribute to the laser frequency stability. Bottom panel: drift corrected time series.

Fig. 10
Fig. 10

Dark and flat-field corrected fringe image for two lines in the passband. Since the laboratory setup only has one monochromatic but tunable source, this image was obtained by adding two monochromatic fringe patterns for different laser frequencies and thus different fringe frequencies.

Fig. 11
Fig. 11

Top panel: one pixel row from a single dark, flat-field, and offset corrected fringe image for two lines in the passband (see Fig. 10). Bottom panel: Fourier transform of the interferogram shown in the top panel. The real part is shown in black; the imaginary part is shown in gray.

Tables (4)

Tables Icon

Table 1 Interferometer Specifications and Performance

Tables Icon

Table 2 Targeted Lines Near λ = 1.250 μm

Tables Icon

Table 3 Principal Breadboard Components

Tables Icon

Table 4 Measurement Parameters and Results

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

δ φ = 4 π Δ d σ ( v / c ) = 2 π k ( v / c ) ,
I ( x ) = 1 2 0 B ( σ ) [ 1 + cos { 2 π [ 4 ( σ σ L ) tan θ L ] × [ x + Δ d 2 tan θ L ] } ] d σ ,
2 ( Δ d W sin θ L ) < d < 2 ( Δ d + W sin θ L ) ,
σ D = σ 0 k T m c 2 ,
2 Δ d OPT = 1 2 π σ D ,
I D ( x ) = j S j [ 1 + E j ( x ) cos ( 2 π κ j x + Φ j + δ φ j ) ] = j S j ( 1 + 1 2 E j ( x ) { exp [ i ( 2 π κ j x + Φ j + δ φ j ) ] + exp [ i ( 2 π κ j x + Φ j + δ φ j ) ] } ) ,
I D 0 ( x ) = 1 2 S 0 E 0 ( x ) exp [ i ( 2 π κ 0 x + Φ 0 + δ φ 0 ) ] = 1 2 S 0 E 0 ( x ) [ cos ( 2 π κ 0 x + Φ 0 + δ φ 0 ) + i sin ( 2 π κ 0 x + Φ 0 + δ φ 0 ) ] .
2 π κ 0 x + Φ 0 + δ φ 0 = arctan ( ( I D 0 ) ( I D 0 ) ) .
ε I = I tot N + ε r + ε d ,
ε S = 1 N ε I .
ε I ISO = n N ε I .
ε P ISO = ε I A i 2 n N = ε I I i 2 N n ,
v = c δ φ 4 π Δ d σ .
v = 2 r ω cos ( θ ) .

Metrics