Abstract

We present a novel spectrum-slicing method for measuring the chromatic dispersion of an optical fiber in Fourier-domain low-coherence interferometry. Broadband spectral interference data obtained from a low-coherence inteferometer is sliced with Gaussian window functions. Each sliced spectral datum is used to calculate a relative group delay with Fourier transformation at the peak wavelength of a narrow window function. We have demonstrated that our proposed method is very powerful and simple for measuring chromatic dispersion and second-order dispersion in optical fibers and optical devices. Comparison of the proposed method with a conventional measurement method agrees within 0.5%.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Diddams and J. C. Diels, "Dispersion measurements with white light interferometry," J. Opt. Soc. Am. B 13, 1120-1129 (1996).
    [CrossRef]
  2. C. Peucheret, F. Lin, and R. J. S. Pedersen, "Measurement of small dispersion values in optical components [WDM networks]," Electron. Lett. 35, 409-410 (1999).
    [CrossRef]
  3. L. G. Cohen and Chinlon Lin, "Pulse delay measurements in the zero material dispersion wavelength region for optical fibers," Appl. Opt. 16, 3136-3139 (1977).
    [CrossRef] [PubMed]
  4. L. G. Cohen, "Comparison of single-mode fiber dispersion measurement techniques," J. Lightwave Technol. 3, 958-966 (1985).
    [CrossRef]
  5. J. Brendel, H. Zbinden, and N. Gision, "Measurement of chromatic dispersion in optical fibers using pairs of correlated photons," Opt. Commun. 151, 35-39 (1998).
    [CrossRef]
  6. K. Takada, T. Kitagawa, K. Hattori, M. Yamada, M. Horiguchi, and R. K. Hickernell, "Direct dispersion measurement of highly-erbium-doped optical amplifiers using a low coherence reflectometer coupled with dispersive Fourier spectroscopy," Electron. Lett. 28, 889-890 (1992).
    [CrossRef]
  7. D. D. Shellee and K. B. Rochford, "Low-coherence interferometric measurements of the dispersion of multiple fiber bragg gratings," IEEE Photon. Technol. Lett. 13, 230-232 (2001).
    [CrossRef]
  8. J. Gehler and W. Spahn, "Dispersion measurement of arrayed-waveguide grating by Fourier transform spectroscopy," Electron. Lett. 36, 338-340 (2000).
    [CrossRef]
  9. R. Cella and W. Wood, "Measurement of chromatic dispersion in erbium doped fiber using low coherence interferometry," in Proceedings of the Sixth Optical Fibre Measurement Conference (National Institute of Standards and Technology, 2001) pp. 207-210.
  10. T.-J. Ahn, Y. Jung, K. Oh, and D. Y. Kim, "Optical frequency-domain chromatic dispersion measurement method for higher-order modes in an optical fiber," Opt. Express 13, 10040-10048 (2005).
    [CrossRef] [PubMed]
  11. A. Wax, C. Yang, and J. A. Izatt, "Fourier-domain low-coherence interferometry for light-scattering spectroscopy," Opt. Lett. 28, 1230-1232 (2003).
    [CrossRef] [PubMed]
  12. P. Hlubina, T. Martynkien, and W. Urbanczyk, "Dispersion of group and phase modal birefringence in elliptical-core fiber measured by white-light spectral interferometry," Opt. Express 11, 2793-2798 (2003).
    [PubMed]
  13. D. Hammer, A. Welch, G. Noojin, R. Thomas, D. Stolarski, and B. Rockwell, "Spectrally resolved white-light interferometry for measurement of ocular dispersion," J. Opt. Soc. Am. A 16, 2092-2102 (1999).
    [CrossRef]
  14. V. N. Kumer and D. N. Rao, "Using interference in the frequency domain for precise determination of thickness and refractive indices of normal dispersive material," J. Opt. Soc. Am. B 12, 1559-1563 (1995).
    [CrossRef]
  15. J. Tapia-Mercado, A. V. Khomenko, and A. Garcia-Weidner, "Precision and sensitivity optimization for white-light interferometric fiber optics sensors," J. Lightwave Technol. 19, 70-74 (2001).
    [CrossRef]
  16. J. Y. Lee and D. Y. Kim, "Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry," Opt. Express 14, 11608-11615 (2006).
    [CrossRef] [PubMed]
  17. A. Wax, C. Yang, and J. A. Izatt, "Fourier-domain low-coherence interferometry for light-scattering spectroscopy," Opt. Lett. 28, 1230-1232 (2003).
    [CrossRef] [PubMed]
  18. R. Graf and A. Wax, "Nuclear morphology measurements using Fourier domain low coherence interferometry," Opt. Express 13, 4693-4698 (2005).
    [CrossRef]
  19. V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, "Measuring cellular structure at the sub-micron scale with light scattering spectroscopy," IEEE J. Sel. Top. Quantum Electron. 7, 887 (2001).
  20. A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, "Cellular organization and sub-structure measured using angle-resolved low coherence interferometry," Biophys. J. 82, 2256-2264 (2002).
    [CrossRef] [PubMed]
  21. C. H. Yang, L. T. Perelman, A. Wax, R. R. Dasari, and M. S. Feld, "Feasibility of field-based light scattering spectroscopy," J. Biomed. Opt. 5, 138-143 (2000).
    [CrossRef] [PubMed]
  22. J. W. Pyhtila, J. D. Boyer, K. J. Chalut, and A. Wax, "Fourier-domain angled resolved low coherence interferometry through and endoscopic fiber bundle for light-scattering spectroscopy," Opt. Lett. 31, 772-773 (2006).
    [CrossRef] [PubMed]
  23. J. Y. Lee, T.-J. Ahn, S. Moon, Y. Jung, K. Oh, and D. Y. Kim, "Differential mode delay analysis for a multimode optical fiber with Fourier-domain low-coherence interferometry," presented at the Optical Fiber Communication Conference (Optical Society of America, 2006), paper OWI18.
  24. J. Y. Lee, T.-J. Ahn, S. Moon, Y. C. Youk, Y. M. Jung, K. Oh, and D. Y. Kim, "Fourier-domain low coherence interferometry for differential mode delay analysis of an optical fiber," Opt. Lett. 28, 1230-1232 (2003).
    [CrossRef]
  25. D. Derickson, Fiber Optic Test and Measurement, Hewlett-Packard professional books (Prentice-Hall, 1998).

2006 (2)

2005 (2)

2003 (4)

2002 (1)

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, "Cellular organization and sub-structure measured using angle-resolved low coherence interferometry," Biophys. J. 82, 2256-2264 (2002).
[CrossRef] [PubMed]

2001 (3)

D. D. Shellee and K. B. Rochford, "Low-coherence interferometric measurements of the dispersion of multiple fiber bragg gratings," IEEE Photon. Technol. Lett. 13, 230-232 (2001).
[CrossRef]

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, "Measuring cellular structure at the sub-micron scale with light scattering spectroscopy," IEEE J. Sel. Top. Quantum Electron. 7, 887 (2001).

J. Tapia-Mercado, A. V. Khomenko, and A. Garcia-Weidner, "Precision and sensitivity optimization for white-light interferometric fiber optics sensors," J. Lightwave Technol. 19, 70-74 (2001).
[CrossRef]

2000 (2)

J. Gehler and W. Spahn, "Dispersion measurement of arrayed-waveguide grating by Fourier transform spectroscopy," Electron. Lett. 36, 338-340 (2000).
[CrossRef]

C. H. Yang, L. T. Perelman, A. Wax, R. R. Dasari, and M. S. Feld, "Feasibility of field-based light scattering spectroscopy," J. Biomed. Opt. 5, 138-143 (2000).
[CrossRef] [PubMed]

1999 (2)

D. Hammer, A. Welch, G. Noojin, R. Thomas, D. Stolarski, and B. Rockwell, "Spectrally resolved white-light interferometry for measurement of ocular dispersion," J. Opt. Soc. Am. A 16, 2092-2102 (1999).
[CrossRef]

C. Peucheret, F. Lin, and R. J. S. Pedersen, "Measurement of small dispersion values in optical components [WDM networks]," Electron. Lett. 35, 409-410 (1999).
[CrossRef]

1998 (1)

J. Brendel, H. Zbinden, and N. Gision, "Measurement of chromatic dispersion in optical fibers using pairs of correlated photons," Opt. Commun. 151, 35-39 (1998).
[CrossRef]

1996 (1)

1995 (1)

1992 (1)

K. Takada, T. Kitagawa, K. Hattori, M. Yamada, M. Horiguchi, and R. K. Hickernell, "Direct dispersion measurement of highly-erbium-doped optical amplifiers using a low coherence reflectometer coupled with dispersive Fourier spectroscopy," Electron. Lett. 28, 889-890 (1992).
[CrossRef]

1985 (1)

L. G. Cohen, "Comparison of single-mode fiber dispersion measurement techniques," J. Lightwave Technol. 3, 958-966 (1985).
[CrossRef]

1977 (1)

Appl. Opt. (1)

Biophys. J. (1)

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, "Cellular organization and sub-structure measured using angle-resolved low coherence interferometry," Biophys. J. 82, 2256-2264 (2002).
[CrossRef] [PubMed]

Electron. Lett. (3)

K. Takada, T. Kitagawa, K. Hattori, M. Yamada, M. Horiguchi, and R. K. Hickernell, "Direct dispersion measurement of highly-erbium-doped optical amplifiers using a low coherence reflectometer coupled with dispersive Fourier spectroscopy," Electron. Lett. 28, 889-890 (1992).
[CrossRef]

J. Gehler and W. Spahn, "Dispersion measurement of arrayed-waveguide grating by Fourier transform spectroscopy," Electron. Lett. 36, 338-340 (2000).
[CrossRef]

C. Peucheret, F. Lin, and R. J. S. Pedersen, "Measurement of small dispersion values in optical components [WDM networks]," Electron. Lett. 35, 409-410 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, "Measuring cellular structure at the sub-micron scale with light scattering spectroscopy," IEEE J. Sel. Top. Quantum Electron. 7, 887 (2001).

IEEE Photon. Technol. Lett. (1)

D. D. Shellee and K. B. Rochford, "Low-coherence interferometric measurements of the dispersion of multiple fiber bragg gratings," IEEE Photon. Technol. Lett. 13, 230-232 (2001).
[CrossRef]

J. Biomed. Opt. (1)

C. H. Yang, L. T. Perelman, A. Wax, R. R. Dasari, and M. S. Feld, "Feasibility of field-based light scattering spectroscopy," J. Biomed. Opt. 5, 138-143 (2000).
[CrossRef] [PubMed]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

J. Brendel, H. Zbinden, and N. Gision, "Measurement of chromatic dispersion in optical fibers using pairs of correlated photons," Opt. Commun. 151, 35-39 (1998).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Other (3)

J. Y. Lee, T.-J. Ahn, S. Moon, Y. Jung, K. Oh, and D. Y. Kim, "Differential mode delay analysis for a multimode optical fiber with Fourier-domain low-coherence interferometry," presented at the Optical Fiber Communication Conference (Optical Society of America, 2006), paper OWI18.

D. Derickson, Fiber Optic Test and Measurement, Hewlett-Packard professional books (Prentice-Hall, 1998).

R. Cella and W. Wood, "Measurement of chromatic dispersion in erbium doped fiber using low coherence interferometry," in Proceedings of the Sixth Optical Fibre Measurement Conference (National Institute of Standards and Technology, 2001) pp. 207-210.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the Fourier-domain low-coherence interferometry for measurement of chromatic dispersion with a broadband source and optical spectrum analyzer, LED, light-emitting diode; PC, polarization controller; FUT, fiber under test; Ref., reference arm; OSA, optical spectrum analyzer.

Fig. 2
Fig. 2

(a) Measured spectral interferogram for a 55   cm long sample fiber (Corning SMF28). (b) Converted dC-free spectral interferogram in the frequency domain; (c) normalized interferogram with a constant amplitude by using the Hilbert transformation method.

Fig. 3
Fig. 3

(a) Spectrum-sliced interferogram with Gaussian window functions. (b) Intensities of Fourier-transformed spectrum-sliced interferograms. (c) Calculated relative group delays and a quadratic fitting curve. (d) Calculated chromatic dispersion coefficient of a sample fiber, and relative errors between the results of our proposed method and those of a conventional measurement method.

Fig. 4
Fig. 4

(a) Spectrum-sliced interferograms with Gaussian window functions. (b) Intensities of Fourier-transformed spectrum-sliced spectra. (c) Relative group delay and a quadratic fitting curve. (d) Chromatic dispersion coefficient of a sample fiber and relative errors between the results of our proposed method and those of a conventional measurement method.

Fig. 5
Fig. 5

(a) Spectrum-sliced interferograms with Gaussian window functions. (b) Intensities of Fourier-transformed spectrum sliced spectra. (c) Relative group delay and a quadratic fitting curve. (d) Chromatic dispersion coefficient of a sample fiber and relative errors between the results of our proposed method and those of a conventional measurement method.

Fig. 6
Fig. 6

(a) Measured spectral interferogram for an NZDSF sample. (b) Chromatic dispersion coefficient of a sample fiber and relative errors between the results of our proposed method and those of a conventional measurement method. (c) Second-order dispersion coefficient.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I ( f ) = | E ( f ) | 2 + a 2 | E ( f ) | 2 + 2 a | E ( f ) | 2 cos ( ϕ ( f ) ) ,
γ ( f ) ( 1 + a 2 ) | E ( f ) | 2 e ( f f 0 ) 2 / Δ f 2 + 2 a | E ( f ) | 2 cos ( ϕ ( f ) ) e ( f f 0 ) 2 / Δ f 2 ( 1 + a 2 ) e ( f f 0 ) 2 / Δ f 2 + 2 a   cos ( ϕ ( f ) ) e ( f f 0 ) 2 / Δ f 2 .
γ ( f ) ( 1 + a 2 ) e ( f f 0 ) 2 / Δ f 2 + a ( e i A e i 2 π B f + e i A e i 2 π B f ) e ( f f 0 ) 2 / Δ f 2 ,
A ( β 0 2 π f 0 β 1 ) L ,
B ( β 1 L τ 0 ) .
Γ ( t ) ( 1 + a 2 ) ( π e π 2 Δ f 2 t 2 e i 2 π f 0 t ) + a ( e i A δ ( t B ) + e i A δ ( t + B ) ) ( π e π 2 Δ f 2 t 2 e i 2 π f 0 t ) ,
D ( λ ) = d β 1 ( λ ) / d λ = ( 1 / L ) d B ( λ ) / d λ .
γ 1 ( f ) = 2 a   cos ( A + 2 π B f ) e ( f f 0 ) 2 / Δ f 2 ,
Γ 1 ( t ) = a ( e i A δ ( t B ) + e i A δ ( t + B ) ) ( π e π 2 Δ f 2 t 2 e i 2 π f 0 t ) .
| Γ 1 ( t ) | 2 = π a 2 ( e 2 π 2 Δ f 2 ( t + B ) 2 + e 2 π 2 Δ f 2 ( t B ) 2 ) .

Metrics