Abstract

An ultrasmall device size optical interleaver based on directional coupler waveguides in two-dimensional photonic crystals (PCs) is proposed. The numerical results show that the proposed PCs waveguide structure could really function as an interleaver with the central wavelength 1550  nm and the channel spacing 0.8  nm (frequency spacing of 100  GHz) of the dense wavelength division multiplexing (DWDM) specification. It can be widely used as the wavelength selective element for multiplexer–demultiplexer to lower or raise channel densities in DWDM optical fiber communication systems.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. S. Y. Kim, S. H. Lee, S. S. Lee, and J. S. Lee, "Upgrading WDM networks using ultradense WDM channel groups," IEEE Photon. Technol. Lett. 16, 1966-1968 (2004).
    [CrossRef]
  2. S. Cao, S. Chen, J. Damask, J. N. Doerr, C. R. Guiziou, L. Harvey, G. Hibino, Y. Li, H. Suzuki, S. Wu, and K.-Y. Xie, P., "Interleaver technology: comparisons and applications requirements," J. Lightwave Technol. 22, 281-289 (2004).
    [CrossRef]
  3. K. Lee, M. Fok, S. Wan, and C. Shu, "Optically controlled Sagnac loop comb filter," Opt. Express 12, 6335-6340 (2004).
    [CrossRef] [PubMed]
  4. S. Li, K. S. Chiang, and W. A. Gambling, "Generation of wavelength-tunable single-mode picosecond pulses from a self-seeded gain-switched Fabry-Perot laser diode with a high-birefringence fiber loop mirror," Appl. Phys. Lett. 76, 3676-3678 (2000).
    [CrossRef]
  5. X. Shu, K. Sugden, and I. Bennion, "Novel multipassband optical filter using all-fiber Michelson-Gires-Tournois structure," IEEE Photon. Technol. Lett. 17, 384-386 (2005).
    [CrossRef]
  6. C. H. Hsieh, R. Wang, Z. J. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
    [CrossRef]
  7. H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, "Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach-Zehnder comb filter," Opt. Commun. 169, 159-165 (1999).
    [CrossRef]
  8. L. Hojoon and G. P. Agrawal, "Add-drop multiplexers and interleavers with broad-band chromatic dispersion compensation based on purely phase-sampled fiber gratings," IEEE Photon. Technol. Lett. 16, 635-637 (2004).
    [CrossRef]
  9. W. Li, Q. Guo, and S. Gu, "Interleaver technology review," Proc. SPIE 4906, 73-80 (2002).
    [CrossRef]
  10. T. Chiba, H. Arai, H. Nounen, and K. Ohira, "Waveguide interleaving filters," Proc. SPIE 5246, 532-538 (2003).
    [CrossRef]
  11. B. B. Dingel, "Recent developments of novel optical interleavers: performance and potential," Proc. SPIE 5246, 570-581 (2003).
    [CrossRef]
  12. Y. Sugimoto, H. Nakamura, Y. Tanaka, N. Ikeda, and K. Asakawa, "High-precision optical interference in Mach-Zehnder-type photonic crystal waveguide," Opt. Express 13, 96-105 (2005).
    [CrossRef] [PubMed]
  13. P. Lalane, "Electromagnetic analysis of photonic crystals waveguides operating above the light cone," IEEE J. Quantum Electron. 38, 800-804 (2002).
    [CrossRef]
  14. Y. D. Wu, K. W. Hsu, and T. T. Shih, "Thirty-two channels dense wavelength division multiplexer based on cascade two-dimensional photonic crystals waveguide structure," J. Opt. Soc. Am. B 24, 2075-2080 (2007).
    [CrossRef]
  15. C. W. Kuo, S. Y. Chen, M. H. Chen, C. F. Chang, and Y. D. Wu, "Analyzing multilayer optical waveguide with all nonlinear layers," Opt. Express 15, 2499-2516 (2007).
    [CrossRef] [PubMed]
  16. M. Imada, S. Noda, A. Chutina, M. Mochizuki, and T. Tanaka, "Channel drop filter using a single defect in a 2-d photonic crystal slab waveguide," J. Lightwave Technol. 20, 873-878 (2002).
    [CrossRef]
  17. S. Oliver, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdre, and U. Oesterle, "Improved 60° bend transmission of submicron-width waveguides defined in two-dimensional photonic crystals," J. Lightwave Technol. 20, 1198-1203 (2002).
    [CrossRef]
  18. J. Zimmermann, M. Kamp, A. Forchel, and R. Marz, "Photonic crystal waveguide directional couplers as wavelength selective optical filters," Opt. Commun. 230, 387-392 (2004).
    [CrossRef]
  19. Y. Tanaka, H. Nakamura, Y. Sugimoto, N. Ikeda, K. Asakawa, and K. Inoue, "Coupling properties in a 2-D photonic crystal slab directional coupler with a triangular lattice of air holes," IEEE J. Quantum. Electron. 41, 76-84 (2005).
    [CrossRef]
  20. M. Tokushima and H. Yamada, "Photonic crystal line defect waveguide directional coupler," Electron. Lett. 37, 1454-1455 (2001).
    [CrossRef]
  21. M. Koshiba, "Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers," J. Lightwave Technol. 19, 1970-1975 (2001).
    [CrossRef]
  22. T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, "Planar photonic crystal coupled cavity waveguides," IEEE J. Sel. Top. Quantum Electron. 8, 909-918 (2002).
    [CrossRef]
  23. S. Kuchinsdy, V. Y. Golyatin, A. Y. Kutikov, T. P. Pearsall, and D. Nedeljkovic, "Coupling between photonic crystal waveguides," IEEE J. Quantum Electron. 38, 1349-1352 (2002).
    [CrossRef]
  24. S. Boscolo, M. Midrio, and C. G. Someda, "Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides," IEEE J. Quantum Electron. 38, 47-53 (2002).
    [CrossRef]
  25. Y. J. Quan, P. D. Han, X. D. Lu, Z. C. Ye, and L. Wu, "Optical interleaver based on directional coupler in a 2D photonic crystal slab with triangular lattice of air holes," Opt. Commun. 22, 1-3 (2006).
  26. A. Martinez, F. Cuesta, and J. Marti, "Ultrashort 2-D photonic crystal directional couplers," IEEE Photon. Technol. Lett. 15, 694-696 (2003).
    [CrossRef]
  27. N. Yamamoto, T. Ogawa, and K. Komori, "Photonic crystal directional coupler switch with small switching length and wide bandwidth," Opt. Express 14, 1223-1224 (2006).
    [CrossRef] [PubMed]
  28. C. C. Chen, C. Y. Chen, W. K. Wang, F. H. Huang, C. K. Lin, W. Y. Chiu, and Y. J. Chan, "Photonic crystal directional couplers formed by InAlGaAs nano-rods," Opt. Express 13, 38-43 (2005).
    [CrossRef] [PubMed]
  29. H. Andreas and S. D. José, "Inverse designed photonic crystal de-multiplex waveguide coupler," Opt. Express 13, 5440-5449 (2005).
    [CrossRef]
  30. F. Cuesta-Soto, A. Martínez, J. García, F. Ramos, P. Sanchis, J. Blasco, and J. Martí, "All-optical switching structure based on a photonic crystal directional coupler," Opt. Express 12, 161-167 (2004).
    [CrossRef] [PubMed]
  31. A. Green, E. Istrate, and E. Sargent, "Efficient design and optimization of photonic crystal waveguides and couplers: the interface diffraction method," Opt. Express 13, 7304-7318 (2005).
    [CrossRef] [PubMed]

2007

2006

N. Yamamoto, T. Ogawa, and K. Komori, "Photonic crystal directional coupler switch with small switching length and wide bandwidth," Opt. Express 14, 1223-1224 (2006).
[CrossRef] [PubMed]

Y. J. Quan, P. D. Han, X. D. Lu, Z. C. Ye, and L. Wu, "Optical interleaver based on directional coupler in a 2D photonic crystal slab with triangular lattice of air holes," Opt. Commun. 22, 1-3 (2006).

2005

2004

F. Cuesta-Soto, A. Martínez, J. García, F. Ramos, P. Sanchis, J. Blasco, and J. Martí, "All-optical switching structure based on a photonic crystal directional coupler," Opt. Express 12, 161-167 (2004).
[CrossRef] [PubMed]

S. Cao, S. Chen, J. Damask, J. N. Doerr, C. R. Guiziou, L. Harvey, G. Hibino, Y. Li, H. Suzuki, S. Wu, and K.-Y. Xie, P., "Interleaver technology: comparisons and applications requirements," J. Lightwave Technol. 22, 281-289 (2004).
[CrossRef]

K. Lee, M. Fok, S. Wan, and C. Shu, "Optically controlled Sagnac loop comb filter," Opt. Express 12, 6335-6340 (2004).
[CrossRef] [PubMed]

L. Hojoon and G. P. Agrawal, "Add-drop multiplexers and interleavers with broad-band chromatic dispersion compensation based on purely phase-sampled fiber gratings," IEEE Photon. Technol. Lett. 16, 635-637 (2004).
[CrossRef]

S. Y. Kim, S. H. Lee, S. S. Lee, and J. S. Lee, "Upgrading WDM networks using ultradense WDM channel groups," IEEE Photon. Technol. Lett. 16, 1966-1968 (2004).
[CrossRef]

J. Zimmermann, M. Kamp, A. Forchel, and R. Marz, "Photonic crystal waveguide directional couplers as wavelength selective optical filters," Opt. Commun. 230, 387-392 (2004).
[CrossRef]

2003

A. Martinez, F. Cuesta, and J. Marti, "Ultrashort 2-D photonic crystal directional couplers," IEEE Photon. Technol. Lett. 15, 694-696 (2003).
[CrossRef]

T. Chiba, H. Arai, H. Nounen, and K. Ohira, "Waveguide interleaving filters," Proc. SPIE 5246, 532-538 (2003).
[CrossRef]

B. B. Dingel, "Recent developments of novel optical interleavers: performance and potential," Proc. SPIE 5246, 570-581 (2003).
[CrossRef]

C. H. Hsieh, R. Wang, Z. J. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

2002

W. Li, Q. Guo, and S. Gu, "Interleaver technology review," Proc. SPIE 4906, 73-80 (2002).
[CrossRef]

P. Lalane, "Electromagnetic analysis of photonic crystals waveguides operating above the light cone," IEEE J. Quantum Electron. 38, 800-804 (2002).
[CrossRef]

M. Imada, S. Noda, A. Chutina, M. Mochizuki, and T. Tanaka, "Channel drop filter using a single defect in a 2-d photonic crystal slab waveguide," J. Lightwave Technol. 20, 873-878 (2002).
[CrossRef]

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, "Planar photonic crystal coupled cavity waveguides," IEEE J. Sel. Top. Quantum Electron. 8, 909-918 (2002).
[CrossRef]

S. Kuchinsdy, V. Y. Golyatin, A. Y. Kutikov, T. P. Pearsall, and D. Nedeljkovic, "Coupling between photonic crystal waveguides," IEEE J. Quantum Electron. 38, 1349-1352 (2002).
[CrossRef]

S. Boscolo, M. Midrio, and C. G. Someda, "Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides," IEEE J. Quantum Electron. 38, 47-53 (2002).
[CrossRef]

S. Oliver, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, R. Houdre, and U. Oesterle, "Improved 60° bend transmission of submicron-width waveguides defined in two-dimensional photonic crystals," J. Lightwave Technol. 20, 1198-1203 (2002).
[CrossRef]

2001

M. Koshiba, "Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers," J. Lightwave Technol. 19, 1970-1975 (2001).
[CrossRef]

M. Tokushima and H. Yamada, "Photonic crystal line defect waveguide directional coupler," Electron. Lett. 37, 1454-1455 (2001).
[CrossRef]

2000

S. Li, K. S. Chiang, and W. A. Gambling, "Generation of wavelength-tunable single-mode picosecond pulses from a self-seeded gain-switched Fabry-Perot laser diode with a high-birefringence fiber loop mirror," Appl. Phys. Lett. 76, 3676-3678 (2000).
[CrossRef]

1999

H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, "Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach-Zehnder comb filter," Opt. Commun. 169, 159-165 (1999).
[CrossRef]

Appl. Phys. Lett.

S. Li, K. S. Chiang, and W. A. Gambling, "Generation of wavelength-tunable single-mode picosecond pulses from a self-seeded gain-switched Fabry-Perot laser diode with a high-birefringence fiber loop mirror," Appl. Phys. Lett. 76, 3676-3678 (2000).
[CrossRef]

Electron. Lett.

M. Tokushima and H. Yamada, "Photonic crystal line defect waveguide directional coupler," Electron. Lett. 37, 1454-1455 (2001).
[CrossRef]

IEEE J. Quantum Electron.

S. Kuchinsdy, V. Y. Golyatin, A. Y. Kutikov, T. P. Pearsall, and D. Nedeljkovic, "Coupling between photonic crystal waveguides," IEEE J. Quantum Electron. 38, 1349-1352 (2002).
[CrossRef]

S. Boscolo, M. Midrio, and C. G. Someda, "Coupling and decoupling of electromagnetic waves in parallel 2-D photonic crystal waveguides," IEEE J. Quantum Electron. 38, 47-53 (2002).
[CrossRef]

P. Lalane, "Electromagnetic analysis of photonic crystals waveguides operating above the light cone," IEEE J. Quantum Electron. 38, 800-804 (2002).
[CrossRef]

IEEE J. Quantum. Electron.

Y. Tanaka, H. Nakamura, Y. Sugimoto, N. Ikeda, K. Asakawa, and K. Inoue, "Coupling properties in a 2-D photonic crystal slab directional coupler with a triangular lattice of air holes," IEEE J. Quantum. Electron. 41, 76-84 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

T. J. Karle, D. H. Brown, R. Wilson, M. Steer, and T. F. Krauss, "Planar photonic crystal coupled cavity waveguides," IEEE J. Sel. Top. Quantum Electron. 8, 909-918 (2002).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Y. Kim, S. H. Lee, S. S. Lee, and J. S. Lee, "Upgrading WDM networks using ultradense WDM channel groups," IEEE Photon. Technol. Lett. 16, 1966-1968 (2004).
[CrossRef]

X. Shu, K. Sugden, and I. Bennion, "Novel multipassband optical filter using all-fiber Michelson-Gires-Tournois structure," IEEE Photon. Technol. Lett. 17, 384-386 (2005).
[CrossRef]

C. H. Hsieh, R. Wang, Z. J. Wen, I. McMichael, P. Yeh, C. W. Lee, and W. H. Cheng, "Flat-top interleavers using two Gires-Tournois etalons as phase-dispersive mirrors in a Michelson interferometer," IEEE Photon. Technol. Lett. 15, 242-244 (2003).
[CrossRef]

L. Hojoon and G. P. Agrawal, "Add-drop multiplexers and interleavers with broad-band chromatic dispersion compensation based on purely phase-sampled fiber gratings," IEEE Photon. Technol. Lett. 16, 635-637 (2004).
[CrossRef]

A. Martinez, F. Cuesta, and J. Marti, "Ultrashort 2-D photonic crystal directional couplers," IEEE Photon. Technol. Lett. 15, 694-696 (2003).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Opt. Commun.

H. L. An, X. Z. Lin, E. Y. B. Pun, and H. D. Liu, "Multi-wavelength operation of an erbium-doped fiber ring laser using a dual-pass Mach-Zehnder comb filter," Opt. Commun. 169, 159-165 (1999).
[CrossRef]

J. Zimmermann, M. Kamp, A. Forchel, and R. Marz, "Photonic crystal waveguide directional couplers as wavelength selective optical filters," Opt. Commun. 230, 387-392 (2004).
[CrossRef]

Y. J. Quan, P. D. Han, X. D. Lu, Z. C. Ye, and L. Wu, "Optical interleaver based on directional coupler in a 2D photonic crystal slab with triangular lattice of air holes," Opt. Commun. 22, 1-3 (2006).

Opt. Express

Proc. SPIE

W. Li, Q. Guo, and S. Gu, "Interleaver technology review," Proc. SPIE 4906, 73-80 (2002).
[CrossRef]

T. Chiba, H. Arai, H. Nounen, and K. Ohira, "Waveguide interleaving filters," Proc. SPIE 5246, 532-538 (2003).
[CrossRef]

B. B. Dingel, "Recent developments of novel optical interleavers: performance and potential," Proc. SPIE 5246, 570-581 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

PC waveguide directional coupler with one row of dielectric rods in the interaction region.

Fig. 2
Fig. 2

Photonic band structure for the modes of a hexagonal array of dielectric rods with r = 0.2 a . The inset shows the high-symmetry points at the corners of the irreducible Brillouin zone.

Fig. 3
Fig. 3

Dispersion relation for the TM modes guided by PC waveguide directional coupler with one row of dielectric rods in the interaction region. The lower defect band corresponds to the odd supermode (the dashed curve) and the upper one corresponds to the even supermode (the solid curve).

Fig. 4
Fig. 4

Field patterns for (a) odd and (b) even modes in a PC waveguide directional coupler with one row of dielectric rods in the interaction region.

Fig. 5
Fig. 5

Dispersion relation of the TM-guided modes of the proposed 2D PC directional coupler for different R c ; R c = 0.14 a (triangles), R c = 0.16 a (circles), R c = 0.12 a (squares). It is observed that two guided TM modes arising from the splitting of an isolated single waveguide mode appear inside the PBG. These modes are named odd and even regarding the symmetry plane between the waveguides.

Fig. 6
Fig. 6

Coupling length as a function of the normalized frequency difference R c in the interaction region.

Fig. 7
Fig. 7

Schematic of the proposed 2D PC waveguide directional coupler. The dotted rectangle shows the supercell used to obtain the dispersion relation.

Fig. 8
Fig. 8

Normalized power response of the PC coupler with R c = 0.2 a and L c = 21 a at both outputs: (a) FDTD results; (b) PWE results.

Fig. 9
Fig. 9

Field evolution at wavelengths: (a) λ 1 = 1454   nm ; (b) λ 2 = 1511   nm ; (c) λ 3 = 1553   nm ; and (d) λ 4 = 1588   nm through the coupler schematized in Fig. 8.

Fig. 10
Fig. 10

Normalized power response of the PC coupler at both outputs (Port1: solid curve; Port2: dashed curve) form PWE results for R c = 0.14 a , L = 305 a , a = 580   nm .

Equations (58)

Equations on this page are rendered with MathJax. Learn more.

1550   nm
0.8   nm
100   GHz
10   mm
β odd
β even
| β odd β even |
L c = π / | β odd β even |
ε = 13.1
r = 0.2 a
0.43421 a / λ 0
( R c )
β odd
β even
L 1 = 5 a
L 2 = 21 a
R c = 0.2 a
L c = L 2 = 21 a
0.5   dB
1.4   nm
R c
λ 1 = 1454   nm
λ 2 = 1511   nm
λ 3 = 1553   nm
λ 4 = 1587   nm
a = 580   nm
r = R c = 116   nm
R c
R c = 0.14 a
a = 580   nm
1550   nm
0.8   nm
100   GHz
L = 305 a = 176.9 μ m
1554   nm
0.5   dB
0.4   nm
0.8   nm
1.5   nm
1550   nm
0.8   nm
100   GHz
L c = 176.9 μ m
r = 0.2 a
R c
R c = 0.14 a
R c = 0.16 a
R c = 0.12 a
R c
R c = 0.2 a
L c = 21 a
λ 1 = 1454   nm
λ 2 = 1511   nm
λ 3 = 1553   nm
λ 4 = 1588   nm
R c = 0.14 a
L = 305 a
a = 580   nm

Metrics