Abstract

Fluorescence has been widely used in biological research and clinical diagnosis. One challenge facing the rapid growth of fluorescence application is the inability to make comparable fluorescence intensity measurements during a long period of clinical study and across laboratories. We propose a method to implement system-independent fluorescence intensity calibration in fiber-optic fluorescence spectrometer systems. This method is based on a National Institute for Standards and Technology traceable standard light source for system spectral response calibration, and a fluorescence reference standard for fluorescence intensity calibration. Human skin in vivo and a fluorescence phantom made of fluorescent microspheres were measured with two different system configurations and at different probe-sample distances. Experimental results showed very good agreement with theory after system-independent fluorescence intensity calibration.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. R. Anderson and J. A. Parrish, "The optics of human skin," J. Invest. Dermatol. 77, 13-19 (1982).
    [CrossRef]
  2. U. Utzinger and R. Richards-Kortum, "Fiber optic probes for biomedical optical spectroscopy," J. Biomed. Opt. 8, 121-147 (2003).
    [CrossRef] [PubMed]
  3. R. Richards-Kortum and E. Sevick-Muraca, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996).
    [CrossRef] [PubMed]
  4. H. Zeng, C. MacAulay, D. I. McLean, B. Palcic, and H. Lui, "The dynamics of laser-induced changes in human skin autofluorescence--experimental measurements and theoretical modeling," Photochem. Photobiol. 68, 227-236 (1998).
    [CrossRef] [PubMed]
  5. J. T. Motz, S. J. Gandhi, O. R. Scepanovic, A. S. Haka, J. R. Kramer, R. R. Dasari, and M. S. Feld, "Real-time Raman system for in vivo disease diagnosis," J. Biomed. Opt. 10, 031113 (2005).
    [CrossRef] [PubMed]
  6. J. T. Motz, M. Hunter, L. H. Galindo, J. A. Gardecki, J. R. Kramer, R. R. Dasari, and M. S. Feld, "Optical fiber probe for biomedical Raman spectroscopy," Appl. Opt. 43, 542-554 (2004).
    [CrossRef] [PubMed]
  7. Z. Huang, H. Zeng, I. Hamzavi, D. I. McLean, and H. Lui, "Rapid near-infrared Raman spectroscopy system for real-time in vivo skin measurements," Opt. Lett. 26, 1782-1784 (2001).
    [CrossRef]
  8. J. Zhao, H. Alkhayat, A. Al Robaee, H. Zeng, D. I. McLean, and H. Lui, "Multimode spectroscopy for the in vivo assessment of post-inflammatory pigmentation--preliminary observations," in Photonic Therapeutics and Diagnostics II, H. Zeng, N. Kollias, B. Choi, R. S. Malek, B. J. F. Wong, J. F. R. Ilgner, E. A. Trowers, W. T. W. de Riese, H. Hirschberg, S. J. Madsen, M. D. Lucroy, L. P. Tate, K. W. Gregory, and G. J. Teamey, eds., Proc. SPIE 607809 (2006).
    [CrossRef]
  9. M. J. Waxdal, M. C. Monical, and A. G. Palini, "Inter-laboratory relative fluorescence intensity measurements using FlowCal 575 calibration beads: a baseline study," Cytometry 33, 213-218 (1998).
    [CrossRef] [PubMed]
  10. H. Zeng, M. Korbelik, D. I. McLean, C. MacAulay, and H. Lui, "Monitoring photoproduct formation and photobleaching by fluorescence spectroscopy has the potential to improve PDT dosimetry with a verteporfin-like photosensitizer," Photochem. Photobiol. 75, 398-405 (2002).
    [CrossRef] [PubMed]
  11. H. Zeng, C. MacAulay, D. I. McLean, and B. Palcic, "Spectroscopic and microscopic characteristics of human skin autofluorescence emission," Photochem. Photobiol. 61, 639-645 (1995).
    [CrossRef] [PubMed]
  12. N. Kollias and G. N. Stamatas, "Optical noninvasive approaches to diagnosis of skin diseases," J. Invest. Dermatol. Symp. Proc. 7, 64-75 (2002).
    [CrossRef]
  13. A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-Kortum, "Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,"Photochem. Photobiol. 68, 427-431 (1998).
    [CrossRef] [PubMed]
  14. A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, "Effect of probe pressure on cervical fluorescence spectroscopy measurements," J. Biomed. Opt. 9, 523-533 (2004).
    [CrossRef] [PubMed]
  15. S. Lam, C. MacAulay, J. Hung, J. LeRiche, A. E. Profio, and B. Palcic, "Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope device," J. Thorac. Cardiovasc. Surg. 105, 1035-1040 (1993).
    [PubMed]
  16. H. Zeng, A. McWilliams, and S. Lam, "Optical spectroscopy and imaging for early lung cancer detection: a review," Photodiagnosis Photodynamic Therapy 1, 111-122 (2004).
  17. H. Lui, S. Said, L. Warshawski, D. Zloty, D. McLean, C. MacAulay, and H. Zeng, "Fluorescence visualization with blue light more accurately estimates the histopathologic margins of basal cell carcinoma as compared to clinical examination alone," in 2001 SPIE/OSA European Conferences on Biomedical Optics, abstract (SPIE/OSA, 2001), p. 51.
  18. P. M. Lane, T. Gilhuly, P. Whitehead, H. Zeng, C. F. Poh, S. Ng, P. M. Williams, L. Zhang, M. R. Rosin, and C. E. MacAulay, "Simple device for the direct visualization of oral cavity tissue fluorescence," J. Biomed. Opt. 11, 024006 (2006).
    [CrossRef] [PubMed]
  19. I. Hamzavi, N. Shiff, M. Martinka, Z. Huang, D. I. McLean, H. Zeng, and H. Lui, "Spectroscopic assessment of dermal melanin using blue vitiligo as an in vivo model," Photodermatol. Photoimmunol. Photomed. 22, 46-51 (2006).
    [CrossRef] [PubMed]
  20. A. K. Gaigalas, L. L. Wang, O. Henderson, R. Vogt, J. Barr, G. Marti, J. Weaver, and A. Schwartz, "The development of fluorescence intensity standards," J. Res. Natl. Inst. Stand. Technol. 106, 381-389 (2001).
  21. A. K. Gaigalas, L. Wang, F. Abbasi, G. E. Marti, R. F. Vogt, and A. Schwartz, "Quantitating fluorescence intensity from fluorophores: practical use of MESF values," J. Res. Natl. Inst. Stand. Technol. 107, 339-353 (2002).
  22. A. Schwartz, L. Wang, E. Early, A. Gaigalas, Y. Zhang, G. E. Marti, and R. F. Vogt, "Quantitating fluorescence intensity from fluorophore: the definition of MESF assignment," J. Res. Natl. Inst. Stand. Technol. 107, 83-91 (2002).
  23. A. K. Gaigalas, L. L. Wang, A. Schwartz, G. E. Marti, and R. F. Vogt, "Quantitating fluorescence intensity from fluorophore: assignment of MESF values," J. Res. Natl. Inst. Stand. Technol. 110, 101-114 (2005).
  24. I. T. Young, Y. Garini, B. Vermolen, G. Liqui Lung, G. Brouwer, S. Hendrichs, M. El Morabit, J. Spoelstra, E. Wilhelm, and M. Zaal, "Absolute fluorescence calibration," in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues IV, D. V. N. Daniel, L. Farkas, and R. C. Leif, eds., Proc. SPIE 6088, 60880U (2006).
  25. E. V. Trujillo, D. R. Sandison, U. Utzinger, N. Ramanujam, M. Follen, and R. Richards-Kortum, "Method to determine tissue fluorescence efficiency in vivo and predict signal-to-noise ration for spectrometers," Appl. Spectrosc. 52, 943-951 (1998).
    [CrossRef]
  26. K. T. Schomacker, T. M. Meese, C. Jiang, C. C. Abele, K. Dickson, S. T. Sum, and R. F. Flewelling, "Novel optical detection system for in vivo identification and localization of cervical intraepithelial neoplasia," J. Biomed. Opt. 11, 034009 (2006).
    [CrossRef] [PubMed]
  27. N. M. Marin, N. MacKinnon, C. MacAulay, S. K. Chang, E. N. Atkinson, D. Cox, D. Serachitopol, B. Pikkula, M. Follen, and R. Richards-Kortum, "Calibration standards for multicenter clinical trials of fluorescence spectroscopy for in vivo diagnosis," J. Biomed. Opt. 11, 014010 (2006).
    [CrossRef] [PubMed]
  28. H. Zeng, D. I. McLean, C. McAulay, B. Palcic, and H. Lui, "Autofluorescence of basal cell carcinoma," in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VIII, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, H. Lui, R. S. Malek, A. P. Perlmutter, L. Reinisch, P. J. Smalley, L. P. Tate, S. L. Thomsen, and G. M. Watson, eds., Proc. SPIE 3245, 314-317 (1998).
  29. H. Zeng, D. I. McLean, C. MacAulay, and H. Lui, "Autofluorescence properties of skin and applications in dermatology," in Biomedical Photonics and Optoelectronic Imaging, H. Liu and Q. Luo, eds., Proc. SPIE 4224, 366-373 (2000).
    [CrossRef]
  30. K. Rivoire, A. Nath, D. Cox, E. N. Atkinson, R. Richards-Kortum, and M. Follen, "The effects of repeated spectroscopic pressure measurements on fluorescence intensity in the cervix," Am. J. Obstet. Gynecol. 191, 1606-1617 (2004).
    [CrossRef] [PubMed]

2006 (6)

J. Zhao, H. Alkhayat, A. Al Robaee, H. Zeng, D. I. McLean, and H. Lui, "Multimode spectroscopy for the in vivo assessment of post-inflammatory pigmentation--preliminary observations," in Photonic Therapeutics and Diagnostics II, H. Zeng, N. Kollias, B. Choi, R. S. Malek, B. J. F. Wong, J. F. R. Ilgner, E. A. Trowers, W. T. W. de Riese, H. Hirschberg, S. J. Madsen, M. D. Lucroy, L. P. Tate, K. W. Gregory, and G. J. Teamey, eds., Proc. SPIE 607809 (2006).
[CrossRef]

P. M. Lane, T. Gilhuly, P. Whitehead, H. Zeng, C. F. Poh, S. Ng, P. M. Williams, L. Zhang, M. R. Rosin, and C. E. MacAulay, "Simple device for the direct visualization of oral cavity tissue fluorescence," J. Biomed. Opt. 11, 024006 (2006).
[CrossRef] [PubMed]

I. Hamzavi, N. Shiff, M. Martinka, Z. Huang, D. I. McLean, H. Zeng, and H. Lui, "Spectroscopic assessment of dermal melanin using blue vitiligo as an in vivo model," Photodermatol. Photoimmunol. Photomed. 22, 46-51 (2006).
[CrossRef] [PubMed]

I. T. Young, Y. Garini, B. Vermolen, G. Liqui Lung, G. Brouwer, S. Hendrichs, M. El Morabit, J. Spoelstra, E. Wilhelm, and M. Zaal, "Absolute fluorescence calibration," in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues IV, D. V. N. Daniel, L. Farkas, and R. C. Leif, eds., Proc. SPIE 6088, 60880U (2006).

K. T. Schomacker, T. M. Meese, C. Jiang, C. C. Abele, K. Dickson, S. T. Sum, and R. F. Flewelling, "Novel optical detection system for in vivo identification and localization of cervical intraepithelial neoplasia," J. Biomed. Opt. 11, 034009 (2006).
[CrossRef] [PubMed]

N. M. Marin, N. MacKinnon, C. MacAulay, S. K. Chang, E. N. Atkinson, D. Cox, D. Serachitopol, B. Pikkula, M. Follen, and R. Richards-Kortum, "Calibration standards for multicenter clinical trials of fluorescence spectroscopy for in vivo diagnosis," J. Biomed. Opt. 11, 014010 (2006).
[CrossRef] [PubMed]

2005 (2)

A. K. Gaigalas, L. L. Wang, A. Schwartz, G. E. Marti, and R. F. Vogt, "Quantitating fluorescence intensity from fluorophore: assignment of MESF values," J. Res. Natl. Inst. Stand. Technol. 110, 101-114 (2005).

J. T. Motz, S. J. Gandhi, O. R. Scepanovic, A. S. Haka, J. R. Kramer, R. R. Dasari, and M. S. Feld, "Real-time Raman system for in vivo disease diagnosis," J. Biomed. Opt. 10, 031113 (2005).
[CrossRef] [PubMed]

2004 (4)

J. T. Motz, M. Hunter, L. H. Galindo, J. A. Gardecki, J. R. Kramer, R. R. Dasari, and M. S. Feld, "Optical fiber probe for biomedical Raman spectroscopy," Appl. Opt. 43, 542-554 (2004).
[CrossRef] [PubMed]

A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, "Effect of probe pressure on cervical fluorescence spectroscopy measurements," J. Biomed. Opt. 9, 523-533 (2004).
[CrossRef] [PubMed]

H. Zeng, A. McWilliams, and S. Lam, "Optical spectroscopy and imaging for early lung cancer detection: a review," Photodiagnosis Photodynamic Therapy 1, 111-122 (2004).

K. Rivoire, A. Nath, D. Cox, E. N. Atkinson, R. Richards-Kortum, and M. Follen, "The effects of repeated spectroscopic pressure measurements on fluorescence intensity in the cervix," Am. J. Obstet. Gynecol. 191, 1606-1617 (2004).
[CrossRef] [PubMed]

2003 (1)

U. Utzinger and R. Richards-Kortum, "Fiber optic probes for biomedical optical spectroscopy," J. Biomed. Opt. 8, 121-147 (2003).
[CrossRef] [PubMed]

2002 (4)

H. Zeng, M. Korbelik, D. I. McLean, C. MacAulay, and H. Lui, "Monitoring photoproduct formation and photobleaching by fluorescence spectroscopy has the potential to improve PDT dosimetry with a verteporfin-like photosensitizer," Photochem. Photobiol. 75, 398-405 (2002).
[CrossRef] [PubMed]

N. Kollias and G. N. Stamatas, "Optical noninvasive approaches to diagnosis of skin diseases," J. Invest. Dermatol. Symp. Proc. 7, 64-75 (2002).
[CrossRef]

A. K. Gaigalas, L. Wang, F. Abbasi, G. E. Marti, R. F. Vogt, and A. Schwartz, "Quantitating fluorescence intensity from fluorophores: practical use of MESF values," J. Res. Natl. Inst. Stand. Technol. 107, 339-353 (2002).

A. Schwartz, L. Wang, E. Early, A. Gaigalas, Y. Zhang, G. E. Marti, and R. F. Vogt, "Quantitating fluorescence intensity from fluorophore: the definition of MESF assignment," J. Res. Natl. Inst. Stand. Technol. 107, 83-91 (2002).

2001 (2)

A. K. Gaigalas, L. L. Wang, O. Henderson, R. Vogt, J. Barr, G. Marti, J. Weaver, and A. Schwartz, "The development of fluorescence intensity standards," J. Res. Natl. Inst. Stand. Technol. 106, 381-389 (2001).

Z. Huang, H. Zeng, I. Hamzavi, D. I. McLean, and H. Lui, "Rapid near-infrared Raman spectroscopy system for real-time in vivo skin measurements," Opt. Lett. 26, 1782-1784 (2001).
[CrossRef]

2000 (1)

H. Zeng, D. I. McLean, C. MacAulay, and H. Lui, "Autofluorescence properties of skin and applications in dermatology," in Biomedical Photonics and Optoelectronic Imaging, H. Liu and Q. Luo, eds., Proc. SPIE 4224, 366-373 (2000).
[CrossRef]

1998 (4)

E. V. Trujillo, D. R. Sandison, U. Utzinger, N. Ramanujam, M. Follen, and R. Richards-Kortum, "Method to determine tissue fluorescence efficiency in vivo and predict signal-to-noise ration for spectrometers," Appl. Spectrosc. 52, 943-951 (1998).
[CrossRef]

M. J. Waxdal, M. C. Monical, and A. G. Palini, "Inter-laboratory relative fluorescence intensity measurements using FlowCal 575 calibration beads: a baseline study," Cytometry 33, 213-218 (1998).
[CrossRef] [PubMed]

H. Zeng, C. MacAulay, D. I. McLean, B. Palcic, and H. Lui, "The dynamics of laser-induced changes in human skin autofluorescence--experimental measurements and theoretical modeling," Photochem. Photobiol. 68, 227-236 (1998).
[CrossRef] [PubMed]

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-Kortum, "Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,"Photochem. Photobiol. 68, 427-431 (1998).
[CrossRef] [PubMed]

1996 (1)

R. Richards-Kortum and E. Sevick-Muraca, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996).
[CrossRef] [PubMed]

1995 (1)

H. Zeng, C. MacAulay, D. I. McLean, and B. Palcic, "Spectroscopic and microscopic characteristics of human skin autofluorescence emission," Photochem. Photobiol. 61, 639-645 (1995).
[CrossRef] [PubMed]

1993 (1)

S. Lam, C. MacAulay, J. Hung, J. LeRiche, A. E. Profio, and B. Palcic, "Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope device," J. Thorac. Cardiovasc. Surg. 105, 1035-1040 (1993).
[PubMed]

1982 (1)

R. R. Anderson and J. A. Parrish, "The optics of human skin," J. Invest. Dermatol. 77, 13-19 (1982).
[CrossRef]

Am. J. Obstet. Gynecol. (1)

K. Rivoire, A. Nath, D. Cox, E. N. Atkinson, R. Richards-Kortum, and M. Follen, "The effects of repeated spectroscopic pressure measurements on fluorescence intensity in the cervix," Am. J. Obstet. Gynecol. 191, 1606-1617 (2004).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

R. Richards-Kortum and E. Sevick-Muraca, "Quantitative optical spectroscopy for tissue diagnosis," Annu. Rev. Phys. Chem. 47, 555-606 (1996).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Cytometry (1)

M. J. Waxdal, M. C. Monical, and A. G. Palini, "Inter-laboratory relative fluorescence intensity measurements using FlowCal 575 calibration beads: a baseline study," Cytometry 33, 213-218 (1998).
[CrossRef] [PubMed]

J. Biomed. Opt. (6)

U. Utzinger and R. Richards-Kortum, "Fiber optic probes for biomedical optical spectroscopy," J. Biomed. Opt. 8, 121-147 (2003).
[CrossRef] [PubMed]

A. Nath, K. Rivoire, S. Chang, D. Cox, E. N. Atkinson, M. Follen, and R. Richards-Kortum, "Effect of probe pressure on cervical fluorescence spectroscopy measurements," J. Biomed. Opt. 9, 523-533 (2004).
[CrossRef] [PubMed]

P. M. Lane, T. Gilhuly, P. Whitehead, H. Zeng, C. F. Poh, S. Ng, P. M. Williams, L. Zhang, M. R. Rosin, and C. E. MacAulay, "Simple device for the direct visualization of oral cavity tissue fluorescence," J. Biomed. Opt. 11, 024006 (2006).
[CrossRef] [PubMed]

K. T. Schomacker, T. M. Meese, C. Jiang, C. C. Abele, K. Dickson, S. T. Sum, and R. F. Flewelling, "Novel optical detection system for in vivo identification and localization of cervical intraepithelial neoplasia," J. Biomed. Opt. 11, 034009 (2006).
[CrossRef] [PubMed]

N. M. Marin, N. MacKinnon, C. MacAulay, S. K. Chang, E. N. Atkinson, D. Cox, D. Serachitopol, B. Pikkula, M. Follen, and R. Richards-Kortum, "Calibration standards for multicenter clinical trials of fluorescence spectroscopy for in vivo diagnosis," J. Biomed. Opt. 11, 014010 (2006).
[CrossRef] [PubMed]

J. T. Motz, S. J. Gandhi, O. R. Scepanovic, A. S. Haka, J. R. Kramer, R. R. Dasari, and M. S. Feld, "Real-time Raman system for in vivo disease diagnosis," J. Biomed. Opt. 10, 031113 (2005).
[CrossRef] [PubMed]

J. Invest. Dermatol. (1)

R. R. Anderson and J. A. Parrish, "The optics of human skin," J. Invest. Dermatol. 77, 13-19 (1982).
[CrossRef]

J. Invest. Dermatol. Symp. Proc. (1)

N. Kollias and G. N. Stamatas, "Optical noninvasive approaches to diagnosis of skin diseases," J. Invest. Dermatol. Symp. Proc. 7, 64-75 (2002).
[CrossRef]

J. Res. Natl. Inst. Stand. Technol. (4)

A. K. Gaigalas, L. L. Wang, O. Henderson, R. Vogt, J. Barr, G. Marti, J. Weaver, and A. Schwartz, "The development of fluorescence intensity standards," J. Res. Natl. Inst. Stand. Technol. 106, 381-389 (2001).

A. K. Gaigalas, L. Wang, F. Abbasi, G. E. Marti, R. F. Vogt, and A. Schwartz, "Quantitating fluorescence intensity from fluorophores: practical use of MESF values," J. Res. Natl. Inst. Stand. Technol. 107, 339-353 (2002).

A. Schwartz, L. Wang, E. Early, A. Gaigalas, Y. Zhang, G. E. Marti, and R. F. Vogt, "Quantitating fluorescence intensity from fluorophore: the definition of MESF assignment," J. Res. Natl. Inst. Stand. Technol. 107, 83-91 (2002).

A. K. Gaigalas, L. L. Wang, A. Schwartz, G. E. Marti, and R. F. Vogt, "Quantitating fluorescence intensity from fluorophore: assignment of MESF values," J. Res. Natl. Inst. Stand. Technol. 110, 101-114 (2005).

J. Thorac. Cardiovasc. Surg. (1)

S. Lam, C. MacAulay, J. Hung, J. LeRiche, A. E. Profio, and B. Palcic, "Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope device," J. Thorac. Cardiovasc. Surg. 105, 1035-1040 (1993).
[PubMed]

Opt. Lett. (1)

Photochem. Photobiol. (4)

H. Zeng, M. Korbelik, D. I. McLean, C. MacAulay, and H. Lui, "Monitoring photoproduct formation and photobleaching by fluorescence spectroscopy has the potential to improve PDT dosimetry with a verteporfin-like photosensitizer," Photochem. Photobiol. 75, 398-405 (2002).
[CrossRef] [PubMed]

H. Zeng, C. MacAulay, D. I. McLean, and B. Palcic, "Spectroscopic and microscopic characteristics of human skin autofluorescence emission," Photochem. Photobiol. 61, 639-645 (1995).
[CrossRef] [PubMed]

H. Zeng, C. MacAulay, D. I. McLean, B. Palcic, and H. Lui, "The dynamics of laser-induced changes in human skin autofluorescence--experimental measurements and theoretical modeling," Photochem. Photobiol. 68, 227-236 (1998).
[CrossRef] [PubMed]

A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-Kortum, "Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,"Photochem. Photobiol. 68, 427-431 (1998).
[CrossRef] [PubMed]

Photodermatol. Photoimmunol. Photomed. (1)

I. Hamzavi, N. Shiff, M. Martinka, Z. Huang, D. I. McLean, H. Zeng, and H. Lui, "Spectroscopic assessment of dermal melanin using blue vitiligo as an in vivo model," Photodermatol. Photoimmunol. Photomed. 22, 46-51 (2006).
[CrossRef] [PubMed]

Photodiagnosis Photodynamic Therapy (1)

H. Zeng, A. McWilliams, and S. Lam, "Optical spectroscopy and imaging for early lung cancer detection: a review," Photodiagnosis Photodynamic Therapy 1, 111-122 (2004).

Proc. SPIE (3)

J. Zhao, H. Alkhayat, A. Al Robaee, H. Zeng, D. I. McLean, and H. Lui, "Multimode spectroscopy for the in vivo assessment of post-inflammatory pigmentation--preliminary observations," in Photonic Therapeutics and Diagnostics II, H. Zeng, N. Kollias, B. Choi, R. S. Malek, B. J. F. Wong, J. F. R. Ilgner, E. A. Trowers, W. T. W. de Riese, H. Hirschberg, S. J. Madsen, M. D. Lucroy, L. P. Tate, K. W. Gregory, and G. J. Teamey, eds., Proc. SPIE 607809 (2006).
[CrossRef]

I. T. Young, Y. Garini, B. Vermolen, G. Liqui Lung, G. Brouwer, S. Hendrichs, M. El Morabit, J. Spoelstra, E. Wilhelm, and M. Zaal, "Absolute fluorescence calibration," in Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues IV, D. V. N. Daniel, L. Farkas, and R. C. Leif, eds., Proc. SPIE 6088, 60880U (2006).

H. Zeng, D. I. McLean, C. MacAulay, and H. Lui, "Autofluorescence properties of skin and applications in dermatology," in Biomedical Photonics and Optoelectronic Imaging, H. Liu and Q. Luo, eds., Proc. SPIE 4224, 366-373 (2000).
[CrossRef]

Other (2)

H. Zeng, D. I. McLean, C. McAulay, B. Palcic, and H. Lui, "Autofluorescence of basal cell carcinoma," in Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems VIII, R. R. Anderson, K. E. Bartels, L. S. Bass, C. G. Garrett, K. W. Gregory, H. Lui, R. S. Malek, A. P. Perlmutter, L. Reinisch, P. J. Smalley, L. P. Tate, S. L. Thomsen, and G. M. Watson, eds., Proc. SPIE 3245, 314-317 (1998).

H. Lui, S. Said, L. Warshawski, D. Zloty, D. McLean, C. MacAulay, and H. Zeng, "Fluorescence visualization with blue light more accurately estimates the histopathologic margins of basal cell carcinoma as compared to clinical examination alone," in 2001 SPIE/OSA European Conferences on Biomedical Optics, abstract (SPIE/OSA, 2001), p. 51.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Illustration of a portable fiber-optic fluorescence spectrometer system. The fiber bundle consists of seven 400 μ m fibers, with six surrounding fiber for illumination, and the center one for light collection. The skin probe is specially designed so that it can be easily moved closer to or farther away from the skin (or object) depending on applications. An in-line long pass filter is used in the light collection path to reject the backscattered excitation background. The spectra can be acquired and saved directly to the computer.

Fig. 2
Fig. 2

Example of the collection efficiency of the fiber as a function of the probe distance. In this example, a fiber N.A. of 0.22, fiber core diameter of 400 μ m , and fiber cladding thickness of 100 μ m are used.

Fig. 3
Fig. 3

Fluorescence spectra at three different locations of the Spectralon fluorescence standard under 440   nm excitation. Note that the three measurements are overlapped, indicating the properties of the fluorescence standard are uniform. The inset shows the variability of the disk with measurements at eight different locations.

Fig. 4
Fig. 4

(a) Original fluorescence spectra and (b) intensity calibrated fluorescence spectra of a fluorescence phantom made of polymer microspheres under 440   nm diode laser excitation with the same system configuration but under different sample-probe distances: N: 11, M: 13, F: 15   mm .

Fig. 5
Fig. 5

(a) Original fluorescence spectra and (b) intensity calibrated fluorescence spectra of human forearm skin in vivo under 440   nm diode laser excitation with the same system configuration under different probe distance. N: 11, M: 13, F: 15   mm .

Fig. 6
Fig. 6

(a) Original fluorescence spectra and (b) intensity calibrated fluorescence spectra of fluorescence phantom under 440   nm excitation with two different system configurations and different sample-probe distances.

Fig. 7
Fig. 7

(a) Original fluorescence spectra and (b) intensity calibrated fluorescence spectra of human forearm skin in vivo under 440   nm excitation with two different system configurations and different probe-sample distances.

Fig. 8
Fig. 8

Intensity calibrated spectra of the fluorescence phantom under multi-wavelength excitation with the same probe-sample distance. The inset shows the normalized spectral shape of the excitation beam. Note that the fluorescence intensity cannot be fully calibrated for multi-wavelength excitation with different spectral shapes.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

S ( λ , λ x ) = γ Q ( λ ) I ( λ x ) A ( d ) Ω ( d ) T ( λ ) ε ( λ x ) ϕ ( λ x ) × s ( λ , λ x ) c Δ λ Δ t ,
S ( λ , λ x ) = I ( λ x ) Ω ( d ) T s ( λ ) F ( λ , λ x ) Δ λ Δ t ,
T s ( λ ) = γ Q ( λ ) T ( λ ) ,
Ω ( d ) = A ( d ) Ω ( d ) ,
F ( λ , λ x ) = ε ( λ x ) ϕ ( λ x ) s ( λ , λ x ) c .
T s ( λ ) = S L ( λ ) / E L ( λ ) ,
  S R ( λ , λ x ) = I ( λ x ) Ω R ( d ) T s ( λ ) F R ( λ , λ x ) Δ λ Δ t ,
S ( λ , λ x ) = I ( λ x ) Ω ( d ) T s ( λ ) F ( λ , λ x ) Δ λ Δ t ,
F ( λ , λ x ) = S ( λ , λ x ) S R ( λ , λ x ) F R ( λ , λ x ) .
F ( λ , λ x ) = S ( λ , λ x ) S R ( λ m , λ x ) T s ( λ m ) T s ( λ ) F R ( λ m , λ x ) .
F ( λ , λ x ) = S ( λ , λ x ) S R ( λ m , λ x ) S L ( λ m ) S L ( λ ) E L ( λ ) E L ( λ m ) F R ( λ m , λ x ) ,
F ( λ ) = S ( λ ) S R ( λ m ) S L ( λ m ) S L ( λ ) E L ( λ ) E L ( λ m ) F R ( λ m ) ,

Metrics