Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Highly sensitive electronically modulated photoacoustic spectrometer for ozone detection

Not Accessible

Your library or personal account may give you access

Abstract

An ozone (O3) gas sensor with a sensitivity of parts per 109 (ppb) level and a high level of selectivity based on the resonant photoacoustic effect was developed using an electronically modulated cw CO2 laser beam. Quite different from the standard chopper modulation of a laser beam, here the laser source was electronically modulated to overcome the inherent problem of frequency instability associated with chopper modulation. With electronic modulation, in conjunction with the fast Fourier transform (FFT) of transient signals, we were able to improve significantly the sensitivity of the photoacoustic (PA) system for the detection of O3. In addition to the improved sensitivity, our method proved that the FFT of a laser modulated PA signal could suppress the noise signal generated by spurious window diffused absorption, which in the case of most commonly used lock-in techniques is rather unavoidable. The dependence of the PA signal on various experimental parameters such as buffer gas, laser power, modulation frequency, and trace gas concentration was investigated. In the case of buffer gas, argon proved to be more suitable than nitrogen and helium in terms of enhancing the sensitivity of the system. The limits of detection of O3 using the 9 P(14) CO2 laser line in our PA system are 5 parts per 109 by volume (ppbv) and 14 ppbv with electronic and standard chopper modulation, respectively. This detection limit of O3 is quite applicable for detection of safe levels of O3, at ground level.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
High sensitive detection of nitric oxide using laser induced photoacoustic spectroscopy at 213 nm

Mohammed A. Gondal, Ahmed Asaad I. Khalil, and Noura Al-Suliman
Appl. Opt. 51(23) 5724-5734 (2012)

Demonstration of a highly sensitive photoacoustic spectrometer based on a miniaturized all-optical detecting sensor

Sheng Zhou, Martin Slaman, and Davide Iannuzzi
Opt. Express 25(15) 17541-17548 (2017)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.