Abstract

We demonstrate a new attractive approach for ubiquitous quantitative chemical or biological sensing when analog signals are acquired from conventional optical disk drives, and these signals are used for quantitative detection of optical changes of sensing films deposited on conventional CD and DVD optical disks. Our developed analytical model of the operation of this Lab-on-DVD system describes the optical response of sensing films deposited onto the read surface of optical disks by taking into account the practical aspects of system performance that include possible reagent leaching effects, water sampling (delivering) efficiency, and possible changes of the film morphology after water removal. By applying a screen-printing process, we demonstrated a laboratory-scale automated production of sensing films with an average thickness of 10μm and a thickness relative standard deviation of <3% across multiple films. Finally, we developed a system for delivery of water-sample volumes to sensing films on the disk that utilized a multifunctional jewel case assembly.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (10)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription