Abstract

We demonstrate the operation of an in-fiber electric field sensor. The sensor is fabricated with selective chemical etching of the core of a D-shaped optical fiber followed by the deposition of an electro-optic polymer (PMMA∕DR1), which forms a hybrid core. The device demonstrates electromagnetic field sensitivity less than 100V/m at a frequency of 2.9  GHz. Eπ is estimated to be 60MV/m with an insertion loss of 14.4  dB.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Ni, B. Gao, and J. Lu, "Research on high power microwave weapons," in Asia-Pacific Microwave Conference 2005 Proceedings (IEEE, 2005), Vol. 2, p. 4.
  2. M. Kanoi, G. Takahashi, T. Sato, M. Higaki, E. Mori, and K. Okumura, "Optical voltage and current measuring system for electric power systems," IEEE Trans. Power Deliv. PWRD-1, 91-97 (1986).
    [CrossRef]
  3. O. Ogawa, T. Sowa, and S. Ichizono, "A guided-wave optical electric field sensor with improved temperature stability," J. Lightwave Technol. 17, 823-830 (1999).
    [CrossRef]
  4. N. Kuwabara, K. Tajima, R. Kobayashi, and F. Amemiya, "Development and analysis of electric field sensor using LiNbO3 optical modulator," IEEE Trans. Electromagn. Compat. 34, 391-396 (1992).
    [CrossRef]
  5. R. Heinzelmann, A. Stohr, D. Kalinowski, and D. Jager, "Miniaturized fiber coupled rf E-field sensor with high sensitivity," in IEEE Lasers and Electro-Optics Society 2000 (IEEE, 2000), Vol. 2, pp. 525-526.
  6. X.-C. Long, R. A. Myers, and S. R. J. Brueck, "A poled electro-optic fiber," IEEE Photon. Technol. Lett. 8, 227-229 (1996).
    [CrossRef]
  7. H. An and S. Fleming, "Creating second-order nonlinearity in pure synthetic silica optical fibers by thermal poling," Opt. Lett. 32, 832-834 (2007).
    [CrossRef] [PubMed]
  8. K. H. Smith, D. J. Markos, B. L. Ipson, S. M. Schultz, R. H. Selfridge, J. P. Barber, K. J. Campbell, T. D. Monte, and R. B. Dyott, "Fabrication and analysis of a low-loss in-fiber active polymer waveguide," Appl. Opt. 43, 933-939 (2004).
    [CrossRef] [PubMed]
  9. S. Mononobe and M. Ohtsu, "Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching," J. Lightwave Technol. 14, 2231-2235 (1996).
    [CrossRef]
  10. D. J. Markos, B. L. Ipson, K. H. Smith, S. M. Schultz, R. H. Selfridge, T. D. Monte, R. B. Dyott, and G. Miller, "Controlled core removal from a D-shaped optical fiber," Appl. Opt. 42, 7121-7125 (2003).
    [CrossRef]
  11. K. H. Smith, R. H. Selfridge, S. M. Schultz, D. J. Markos, and B. L. Ipson, "Analysis of replacing an optical fiber core with polymer," Opt. Express 12, 354-360 (2004).
    [CrossRef] [PubMed]
  12. G. B. Hocker, "Fiber-optic sensing of pressure and temperature," Appl. Opt. 18, 1445-1448 (1979).
    [CrossRef] [PubMed]
  13. M. Mermelstein, "All-fiber polarimetric sensor," Appl. Opt. 25, 1256-1258 (1986).
    [CrossRef] [PubMed]
  14. M. A. Mortazavi, A. Knoesen, and S. T. Kowel, "Second-harmonic generation and absorption studies of polymer-dye films oriented by corona-onset poling at elevated temperatures," J. Opt. Soc. Am. B 6, 733-741 (1989).
    [CrossRef]

2007

2005

G. Ni, B. Gao, and J. Lu, "Research on high power microwave weapons," in Asia-Pacific Microwave Conference 2005 Proceedings (IEEE, 2005), Vol. 2, p. 4.

2004

2003

2000

R. Heinzelmann, A. Stohr, D. Kalinowski, and D. Jager, "Miniaturized fiber coupled rf E-field sensor with high sensitivity," in IEEE Lasers and Electro-Optics Society 2000 (IEEE, 2000), Vol. 2, pp. 525-526.

1999

1996

X.-C. Long, R. A. Myers, and S. R. J. Brueck, "A poled electro-optic fiber," IEEE Photon. Technol. Lett. 8, 227-229 (1996).
[CrossRef]

S. Mononobe and M. Ohtsu, "Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching," J. Lightwave Technol. 14, 2231-2235 (1996).
[CrossRef]

1992

N. Kuwabara, K. Tajima, R. Kobayashi, and F. Amemiya, "Development and analysis of electric field sensor using LiNbO3 optical modulator," IEEE Trans. Electromagn. Compat. 34, 391-396 (1992).
[CrossRef]

1989

1986

M. Mermelstein, "All-fiber polarimetric sensor," Appl. Opt. 25, 1256-1258 (1986).
[CrossRef] [PubMed]

M. Kanoi, G. Takahashi, T. Sato, M. Higaki, E. Mori, and K. Okumura, "Optical voltage and current measuring system for electric power systems," IEEE Trans. Power Deliv. PWRD-1, 91-97 (1986).
[CrossRef]

1979

Amemiya, F.

N. Kuwabara, K. Tajima, R. Kobayashi, and F. Amemiya, "Development and analysis of electric field sensor using LiNbO3 optical modulator," IEEE Trans. Electromagn. Compat. 34, 391-396 (1992).
[CrossRef]

An, H.

Barber, J. P.

Brueck, S. R. J.

X.-C. Long, R. A. Myers, and S. R. J. Brueck, "A poled electro-optic fiber," IEEE Photon. Technol. Lett. 8, 227-229 (1996).
[CrossRef]

Campbell, K. J.

Dyott, R. B.

Fleming, S.

Gao, B.

G. Ni, B. Gao, and J. Lu, "Research on high power microwave weapons," in Asia-Pacific Microwave Conference 2005 Proceedings (IEEE, 2005), Vol. 2, p. 4.

Heinzelmann, R.

R. Heinzelmann, A. Stohr, D. Kalinowski, and D. Jager, "Miniaturized fiber coupled rf E-field sensor with high sensitivity," in IEEE Lasers and Electro-Optics Society 2000 (IEEE, 2000), Vol. 2, pp. 525-526.

Higaki, M.

M. Kanoi, G. Takahashi, T. Sato, M. Higaki, E. Mori, and K. Okumura, "Optical voltage and current measuring system for electric power systems," IEEE Trans. Power Deliv. PWRD-1, 91-97 (1986).
[CrossRef]

Hocker, G. B.

Ichizono, S.

Ipson, B. L.

Jager, D.

R. Heinzelmann, A. Stohr, D. Kalinowski, and D. Jager, "Miniaturized fiber coupled rf E-field sensor with high sensitivity," in IEEE Lasers and Electro-Optics Society 2000 (IEEE, 2000), Vol. 2, pp. 525-526.

Kalinowski, D.

R. Heinzelmann, A. Stohr, D. Kalinowski, and D. Jager, "Miniaturized fiber coupled rf E-field sensor with high sensitivity," in IEEE Lasers and Electro-Optics Society 2000 (IEEE, 2000), Vol. 2, pp. 525-526.

Kanoi, M.

M. Kanoi, G. Takahashi, T. Sato, M. Higaki, E. Mori, and K. Okumura, "Optical voltage and current measuring system for electric power systems," IEEE Trans. Power Deliv. PWRD-1, 91-97 (1986).
[CrossRef]

Knoesen, A.

Kobayashi, R.

N. Kuwabara, K. Tajima, R. Kobayashi, and F. Amemiya, "Development and analysis of electric field sensor using LiNbO3 optical modulator," IEEE Trans. Electromagn. Compat. 34, 391-396 (1992).
[CrossRef]

Kowel, S. T.

Kuwabara, N.

N. Kuwabara, K. Tajima, R. Kobayashi, and F. Amemiya, "Development and analysis of electric field sensor using LiNbO3 optical modulator," IEEE Trans. Electromagn. Compat. 34, 391-396 (1992).
[CrossRef]

Long, X.-C.

X.-C. Long, R. A. Myers, and S. R. J. Brueck, "A poled electro-optic fiber," IEEE Photon. Technol. Lett. 8, 227-229 (1996).
[CrossRef]

Lu, J.

G. Ni, B. Gao, and J. Lu, "Research on high power microwave weapons," in Asia-Pacific Microwave Conference 2005 Proceedings (IEEE, 2005), Vol. 2, p. 4.

Markos, D. J.

Mermelstein, M.

Miller, G.

Mononobe, S.

S. Mononobe and M. Ohtsu, "Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching," J. Lightwave Technol. 14, 2231-2235 (1996).
[CrossRef]

Monte, T. D.

Mori, E.

M. Kanoi, G. Takahashi, T. Sato, M. Higaki, E. Mori, and K. Okumura, "Optical voltage and current measuring system for electric power systems," IEEE Trans. Power Deliv. PWRD-1, 91-97 (1986).
[CrossRef]

Mortazavi, M. A.

Myers, R. A.

X.-C. Long, R. A. Myers, and S. R. J. Brueck, "A poled electro-optic fiber," IEEE Photon. Technol. Lett. 8, 227-229 (1996).
[CrossRef]

Ni, G.

G. Ni, B. Gao, and J. Lu, "Research on high power microwave weapons," in Asia-Pacific Microwave Conference 2005 Proceedings (IEEE, 2005), Vol. 2, p. 4.

Ogawa, O.

Ohtsu, M.

S. Mononobe and M. Ohtsu, "Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching," J. Lightwave Technol. 14, 2231-2235 (1996).
[CrossRef]

Okumura, K.

M. Kanoi, G. Takahashi, T. Sato, M. Higaki, E. Mori, and K. Okumura, "Optical voltage and current measuring system for electric power systems," IEEE Trans. Power Deliv. PWRD-1, 91-97 (1986).
[CrossRef]

Sato, T.

M. Kanoi, G. Takahashi, T. Sato, M. Higaki, E. Mori, and K. Okumura, "Optical voltage and current measuring system for electric power systems," IEEE Trans. Power Deliv. PWRD-1, 91-97 (1986).
[CrossRef]

Schultz, S. M.

Selfridge, R. H.

Smith, K. H.

Sowa, T.

Stohr, A.

R. Heinzelmann, A. Stohr, D. Kalinowski, and D. Jager, "Miniaturized fiber coupled rf E-field sensor with high sensitivity," in IEEE Lasers and Electro-Optics Society 2000 (IEEE, 2000), Vol. 2, pp. 525-526.

Tajima, K.

N. Kuwabara, K. Tajima, R. Kobayashi, and F. Amemiya, "Development and analysis of electric field sensor using LiNbO3 optical modulator," IEEE Trans. Electromagn. Compat. 34, 391-396 (1992).
[CrossRef]

Takahashi, G.

M. Kanoi, G. Takahashi, T. Sato, M. Higaki, E. Mori, and K. Okumura, "Optical voltage and current measuring system for electric power systems," IEEE Trans. Power Deliv. PWRD-1, 91-97 (1986).
[CrossRef]

Appl. Opt.

IEEE Photon. Technol. Lett.

X.-C. Long, R. A. Myers, and S. R. J. Brueck, "A poled electro-optic fiber," IEEE Photon. Technol. Lett. 8, 227-229 (1996).
[CrossRef]

IEEE Trans. Electromagn. Compat.

N. Kuwabara, K. Tajima, R. Kobayashi, and F. Amemiya, "Development and analysis of electric field sensor using LiNbO3 optical modulator," IEEE Trans. Electromagn. Compat. 34, 391-396 (1992).
[CrossRef]

IEEE Trans. Power Deliv.

M. Kanoi, G. Takahashi, T. Sato, M. Higaki, E. Mori, and K. Okumura, "Optical voltage and current measuring system for electric power systems," IEEE Trans. Power Deliv. PWRD-1, 91-97 (1986).
[CrossRef]

J. Lightwave Technol.

O. Ogawa, T. Sowa, and S. Ichizono, "A guided-wave optical electric field sensor with improved temperature stability," J. Lightwave Technol. 17, 823-830 (1999).
[CrossRef]

S. Mononobe and M. Ohtsu, "Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching," J. Lightwave Technol. 14, 2231-2235 (1996).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Other

R. Heinzelmann, A. Stohr, D. Kalinowski, and D. Jager, "Miniaturized fiber coupled rf E-field sensor with high sensitivity," in IEEE Lasers and Electro-Optics Society 2000 (IEEE, 2000), Vol. 2, pp. 525-526.

G. Ni, B. Gao, and J. Lu, "Research on high power microwave weapons," in Asia-Pacific Microwave Conference 2005 Proceedings (IEEE, 2005), Vol. 2, p. 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(Color online) D fiber that consists of a germania-doped core surrounded by a fluorine-doped depressed cladding and an undoped supercladding with refractive indices of 1.4756, 1.441, and 1.444, respectively.

Fig. 2
Fig. 2

Cross-sectional SEM image of D fiber with the core partially replaced with an EO polymer.

Fig. 3
Fig. 3

(Color online) (a) Corona poling charges accumulate on ground plane when trying to pole D fiber. (b) Corona poling charges form a high electric field on encapsulated D fiber.

Fig. 4
Fig. 4

(Color online) Basic planarization process consists of (a) depositing epoxy over a D fiber that is placed on top of a copper electrode and (b) pushing a glass coverslip over the fiber.

Fig. 5
Fig. 5

(Color online) SEM image of the planarized D-fiber sensor and a corresponding illustration of the structure.

Fig. 6
Fig. 6

(Color online) Two sensor testing configurations consist of (a) using a polarization analyzer and (b) converting the polarization state into intensity using a linear polarizer oriented at 45° with respect to the flat surface of the D fiber.

Fig. 7
Fig. 7

Measured power (dots) as a function of applied voltage and the corresponding fit (solid curve).

Fig. 8
Fig. 8

Measured power when a field is applied to the sensor with a frequency of approximately f = 2.9   GHz and an amplitude of E 100 V / m .

Tables (1)

Tables Icon

Table 1 Measured Sensor Data

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ B = ( N y , 0 N z , 0 ) ( N y , E N z , E ) ,
E = E 0 y y ^ + E 0 z z ^   exp   j ϵ ,
ϵ = ϕ 0 + π E E π .
Δ ϵ = ϕ 0 + π E 2 E π ( ϕ 0 + π E 1 E π ) = π Δ E E π .
I = I 0 2 [ 1 + sin ( ϕ 0 + π E E π ) ] .
S 1 = E 0 y 2 E 0 z 2 ,
S 2 = 2 E 0 y E 0 z   cos ( ϵ ) ,
S 3 = 2 E 0 y E 0 z   sin ( ϵ ) ,

Metrics