Abstract

We describe an experimental study of holographic (coherent) scattering due to parasitic noise gratings recorded in SiO2 nanoparticle-dispersed photopolymer films. Dependences of film thickness and nanoparticle concentration on holographic scattering losses are evaluated. It is shown that the geometric feature of the holographic scattering pattern in the two-beam recording setup can be explained by the Ewald sphere construction. It is found that holographic scattering becomes noticeable when a film with nanoparticle concentrations higher than 10 vol.% is thicker than 100μm. The significance of holographic scattering in the characterization of a volume grating recorded in a thick (>100μm) nanoparticle-dispersed photopolymer film is also discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K. Biedermann, "The scattered flux spectrum of photographic materials for holography," Optik 31, 367-389 (1970).
  2. R. R. A. Syms and L. Solymar, "Noise gratings in photographic emulsions," Opt. Commun. 43, 107-110 (1982).
    [CrossRef]
  3. L. Solymar and G. D. G. Riddy, "Noise gratings for single- and double-beam exposures in silver halide emulsions," J. Opt. Soc. Am. A 7, 2107-2108 (1990).
    [CrossRef]
  4. A. Fimia, R. Fuentes, and A. Beléndez, "Noise gratings in bleached silver halide diffuse-object holograms," Opt. Lett. 19, 1243-1245 (1994).
    [CrossRef] [PubMed]
  5. J. M. Moran and I. P. Kaminow, "Properties of holographic gratings photoinduced in polymethyl methacrylate," Appl. Opt. 12, 1964-1970 (1973).
    [CrossRef] [PubMed]
  6. E. S. Gyul'nazarov, T. N. Smirnova, D. V. Surovtsev, and E. A. Tkhonov, "Light scattering in holograms written on photopolymerizing compositions," J. Appl. Spectrosc. 51, 728-733 (1989).
    [CrossRef]
  7. A. Beléndez, A. Fimia, L. Caretero, and F. Mateos, "Self-induced phase gratings due to the inhomogeneous structure of acrylamide photopolymer systems used as holographic recording materials," Appl. Phys. Lett. 67, 3856-3858 (1995).
    [CrossRef]
  8. L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, and A. Fimia, "A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography," J. Mod. Opt. 45, 2345-2354 (1998).
    [CrossRef]
  9. J. A. Frantz, R. K. Kostuk, and D. A. Waldman, "Coherent scattering properties of a cationic ring-opening volume holographic recording material," Proc. SPIE 4296, 267-273 (2001).
    [CrossRef]
  10. J. A. Frantz, R. K. Kostuk, and D. A. Waldman, "Model of noise-grating selectivity in volume holographic recording materials by use of Monte Carlo simulations," J. Opt. Soc. Am. A 21, 378-387 (2004).
    [CrossRef]
  11. M. A. Ellabban, M. Fally, H. Uršic, and I. Drevenšec-Olenik, "Holographic scattering in photopolymer-dispersed liquid crystals," Appl. Phys. Lett. 87, 151101 (2005).
    [CrossRef]
  12. W. Phillips, J. J. Amodei, and D. L. Staebler, "Optical and holographic storage properties of transition metal doped lithium niobate," RCA Rev. 33, 94-109 (1972).
  13. R. Magnusson and T. K. Gaylord, "Laser scattering induced holograms in lithium niobate," Appl. Opt. 13, 1545-1548 (1974).
    [CrossRef]
  14. V. Voronov, I. Dorosh, Yu. Kuz'minov, and N. Tkachenko, "Photoinduced light scattering in cerium-doped barium strontium niobate crystals," Sov. J. Quantum Electron. 10, 1346-1349 (1980).
    [CrossRef]
  15. R. A. Rupp and F. W. Dress, "Light-induced scattering in photorefractive crystals," Appl. Phys. B 39, 223-229 (1986).
    [CrossRef]
  16. M. Imlau, Th. Woike, R. Schieder, and R. A. Rupp, "Holographic scattering in centrosymmetric Na2[Fe(CN)5NO] · 2H2O," Phys. Rev. Lett. 82, 2860-2863 (1999).
    [CrossRef]
  17. M. Fally, M. A. Ellaban, R. A. Rupp, M. Fink, and J. Wolfberger, "Characterization of parasitic grating in LiNbO3," Phys. Rev. B 61, 15778-15784 (2000).
    [CrossRef]
  18. T. N. Smirnova and E. A. Tikhonov, "Conical scattering of laser beams in active solutions," Sov. J. Quantum Electron. 9, 93-97 (1979).
    [CrossRef]
  19. M. R. B. Forshaw, "Explanation of the "Venetial blind" effect in holography using the Ewald sphere concept," Opt. Commun. 8, 201-206 (1973).
    [CrossRef]
  20. M. R. B. Forshaw, "Explanation of the two-ring diffraction phenomenon observed by Moran and Kaminow," Appl. Opt. 13, 2 (1974).
    [CrossRef] [PubMed]
  21. S. I. Ragnarsson, "Scattering phenomena in volume holograms with strong coupling," Appl. Opt. 17, 116-127 (1978).
    [CrossRef] [PubMed]
  22. G. D. G. Riddy and L. Solymar, "Theoretical model of reconstructured scatter in volume holograms," Electron. Lett. 22, 872-873 (1986).
    [CrossRef]
  23. L. Solymar and J. C. W. Newell, "Silver halide noise gratings recorded in dichromated gelatin," Opt. Commun. 73, 273-276 (1989).
    [CrossRef]
  24. R. K. Kostuk and G. T. Sincerbox, "Polarization sensitivity of noise gratings recorded in silver halide volume holograms," Appl. Opt. 27, 2993-2998 (1988).
    [CrossRef] [PubMed]
  25. A. Beléndez, L. Carretero, and I. Pascual, "Polarization influences on the efficiency of noise gratings recorded in silver halide holograms," Appl. Opt. 32, 7155-7163 (1993).
    [CrossRef] [PubMed]
  26. N. Suzuki and Y. Tomita, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films," Appl. Phys. Lett. 81, 4121-4123 (2002).
    [CrossRef]
  27. Y. Tomita and H. Nishibiraki, "Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes," Appl. Phys. Lett. 83, 410-412 (2003).
    [CrossRef]
  28. N. Suzuki and Y. Tomita, "Silica-nanoparticle-dispersed methacrylate photopolymers with net diffraction efficiency near 100%," Appl. Opt. 43, 2125-2129 (2004).
    [CrossRef] [PubMed]
  29. Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, "Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage," Appl. Phys. Lett. 88, 071103 (2006).
    [CrossRef]
  30. N. Suzuki, Y. Tomita, K. Ohmori, M. Hidaka, and K. Chikama, "Highly transparent ZrO2 nanoparticle-dispersed acrylate photopolymers for volume holographic recording," Opt. Express 14, 12712-12719 (2006).
    [CrossRef] [PubMed]
  31. Y. Tomita, N. Suzuki, and K. Chikama, "Holographic manipulation of nanoparticle-distribution morphology in nanoparticle-dispersed photopolymers," Opt. Lett. 30, 839-841 (2005).
    [CrossRef] [PubMed]
  32. Y. Tomita, K. Chikama, Y. Nohara, N. Suzuki, K. Furushima, and Y. Endoh, "Two-dimensional imaging of atomic distribution morphology created by holographically induced mass transfer of monomer molecules and nanoparticles in a silica-nanoparticle-dispersed photopolymer film," Opt. Lett. 31, 1402-1404 (2006).
    [CrossRef] [PubMed]
  33. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1957).
  34. N. Kukhtarev, V. Markov, S. Odoulov, M. Soskin, and V. Vinetskii, "Holographic storage in electrooptic crystals. II. Beam coupling-light amplification," Ferroelectrics 22, 961-964 (1979).
    [CrossRef]
  35. A. P. Yakimovich, "Dynamic self-amplification of scattering noise in voume-hologram recording," Opt. Spectrosc. 49, 191-193 (1980).
  36. V. A. Barachevskii, "Photopolymerizable recording media for three-dimensional holographic optical memory," High. Energy Chem. 40, 131-141 (2006).
    [CrossRef]
  37. W. Heller, "Elements of the theory of light scattering. I. Scattering in gases, liquids, solutions, and dispersions of small particles," Rec. Chem. Prog. 20, 209-233 (1959).
  38. T. Kyprianidou-Leodidou, W. Caseri, and U. W. Suter, "Size variations of PbS particles in high-refractive-index nanocomposites," J. Phys. Chem. 98, 8992-8997 (1994).
    [CrossRef]
  39. H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).
  40. L. B. Au, J. C. W. Newell, and L. Solymar, "Non-uniformities in thick dichromated gelatin transmission gratings," J. Mod. Opt. 34, 1211-1225 (1987).
    [CrossRef]
  41. D. Kermisch, "Nonuniform sinusoidally modulated dielectric gratings," J. Opt. Soc. Am. 59, 1409-1414 (1969).
    [CrossRef]
  42. N. Uchida, "Calculation of diffraction efficiency in hologram gratings attenuated along the direction perpendicular to the grating vector," J. Opt. Soc. Am. 63, 280-287 (1973).
    [CrossRef]
  43. J. E. Boyd, T. J. Trentler, R. K. Wahi, Y. I. Vega-Cantu, and V. L. Colvin, "Effect of film thickness on the performance of photopolymers as holographic recording materials," Appl. Opt. 39, 2353-2358 (2000).
    [CrossRef]

2006 (4)

2005 (2)

Y. Tomita, N. Suzuki, and K. Chikama, "Holographic manipulation of nanoparticle-distribution morphology in nanoparticle-dispersed photopolymers," Opt. Lett. 30, 839-841 (2005).
[CrossRef] [PubMed]

M. A. Ellabban, M. Fally, H. Uršic, and I. Drevenšec-Olenik, "Holographic scattering in photopolymer-dispersed liquid crystals," Appl. Phys. Lett. 87, 151101 (2005).
[CrossRef]

2004 (2)

2003 (1)

Y. Tomita and H. Nishibiraki, "Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes," Appl. Phys. Lett. 83, 410-412 (2003).
[CrossRef]

2002 (1)

N. Suzuki and Y. Tomita, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films," Appl. Phys. Lett. 81, 4121-4123 (2002).
[CrossRef]

2001 (1)

J. A. Frantz, R. K. Kostuk, and D. A. Waldman, "Coherent scattering properties of a cationic ring-opening volume holographic recording material," Proc. SPIE 4296, 267-273 (2001).
[CrossRef]

2000 (2)

M. Fally, M. A. Ellaban, R. A. Rupp, M. Fink, and J. Wolfberger, "Characterization of parasitic grating in LiNbO3," Phys. Rev. B 61, 15778-15784 (2000).
[CrossRef]

J. E. Boyd, T. J. Trentler, R. K. Wahi, Y. I. Vega-Cantu, and V. L. Colvin, "Effect of film thickness on the performance of photopolymers as holographic recording materials," Appl. Opt. 39, 2353-2358 (2000).
[CrossRef]

1999 (1)

M. Imlau, Th. Woike, R. Schieder, and R. A. Rupp, "Holographic scattering in centrosymmetric Na2[Fe(CN)5NO] · 2H2O," Phys. Rev. Lett. 82, 2860-2863 (1999).
[CrossRef]

1998 (1)

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, and A. Fimia, "A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography," J. Mod. Opt. 45, 2345-2354 (1998).
[CrossRef]

1995 (1)

A. Beléndez, A. Fimia, L. Caretero, and F. Mateos, "Self-induced phase gratings due to the inhomogeneous structure of acrylamide photopolymer systems used as holographic recording materials," Appl. Phys. Lett. 67, 3856-3858 (1995).
[CrossRef]

1994 (2)

A. Fimia, R. Fuentes, and A. Beléndez, "Noise gratings in bleached silver halide diffuse-object holograms," Opt. Lett. 19, 1243-1245 (1994).
[CrossRef] [PubMed]

T. Kyprianidou-Leodidou, W. Caseri, and U. W. Suter, "Size variations of PbS particles in high-refractive-index nanocomposites," J. Phys. Chem. 98, 8992-8997 (1994).
[CrossRef]

1993 (1)

1990 (1)

1989 (2)

E. S. Gyul'nazarov, T. N. Smirnova, D. V. Surovtsev, and E. A. Tkhonov, "Light scattering in holograms written on photopolymerizing compositions," J. Appl. Spectrosc. 51, 728-733 (1989).
[CrossRef]

L. Solymar and J. C. W. Newell, "Silver halide noise gratings recorded in dichromated gelatin," Opt. Commun. 73, 273-276 (1989).
[CrossRef]

1988 (1)

1987 (1)

L. B. Au, J. C. W. Newell, and L. Solymar, "Non-uniformities in thick dichromated gelatin transmission gratings," J. Mod. Opt. 34, 1211-1225 (1987).
[CrossRef]

1986 (2)

G. D. G. Riddy and L. Solymar, "Theoretical model of reconstructured scatter in volume holograms," Electron. Lett. 22, 872-873 (1986).
[CrossRef]

R. A. Rupp and F. W. Dress, "Light-induced scattering in photorefractive crystals," Appl. Phys. B 39, 223-229 (1986).
[CrossRef]

1982 (1)

R. R. A. Syms and L. Solymar, "Noise gratings in photographic emulsions," Opt. Commun. 43, 107-110 (1982).
[CrossRef]

1980 (2)

V. Voronov, I. Dorosh, Yu. Kuz'minov, and N. Tkachenko, "Photoinduced light scattering in cerium-doped barium strontium niobate crystals," Sov. J. Quantum Electron. 10, 1346-1349 (1980).
[CrossRef]

A. P. Yakimovich, "Dynamic self-amplification of scattering noise in voume-hologram recording," Opt. Spectrosc. 49, 191-193 (1980).

1979 (2)

N. Kukhtarev, V. Markov, S. Odoulov, M. Soskin, and V. Vinetskii, "Holographic storage in electrooptic crystals. II. Beam coupling-light amplification," Ferroelectrics 22, 961-964 (1979).
[CrossRef]

T. N. Smirnova and E. A. Tikhonov, "Conical scattering of laser beams in active solutions," Sov. J. Quantum Electron. 9, 93-97 (1979).
[CrossRef]

1978 (1)

1974 (2)

R. Magnusson and T. K. Gaylord, "Laser scattering induced holograms in lithium niobate," Appl. Opt. 13, 1545-1548 (1974).
[CrossRef]

M. R. B. Forshaw, "Explanation of the two-ring diffraction phenomenon observed by Moran and Kaminow," Appl. Opt. 13, 2 (1974).
[CrossRef] [PubMed]

1973 (3)

1972 (1)

W. Phillips, J. J. Amodei, and D. L. Staebler, "Optical and holographic storage properties of transition metal doped lithium niobate," RCA Rev. 33, 94-109 (1972).

1970 (1)

K. Biedermann, "The scattered flux spectrum of photographic materials for holography," Optik 31, 367-389 (1970).

1969 (2)

D. Kermisch, "Nonuniform sinusoidally modulated dielectric gratings," J. Opt. Soc. Am. 59, 1409-1414 (1969).
[CrossRef]

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

1959 (1)

W. Heller, "Elements of the theory of light scattering. I. Scattering in gases, liquids, solutions, and dispersions of small particles," Rec. Chem. Prog. 20, 209-233 (1959).

Appl. Opt. (8)

Appl. Phys. B (1)

R. A. Rupp and F. W. Dress, "Light-induced scattering in photorefractive crystals," Appl. Phys. B 39, 223-229 (1986).
[CrossRef]

Appl. Phys. Lett. (5)

A. Beléndez, A. Fimia, L. Caretero, and F. Mateos, "Self-induced phase gratings due to the inhomogeneous structure of acrylamide photopolymer systems used as holographic recording materials," Appl. Phys. Lett. 67, 3856-3858 (1995).
[CrossRef]

M. A. Ellabban, M. Fally, H. Uršic, and I. Drevenšec-Olenik, "Holographic scattering in photopolymer-dispersed liquid crystals," Appl. Phys. Lett. 87, 151101 (2005).
[CrossRef]

N. Suzuki and Y. Tomita, "Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films," Appl. Phys. Lett. 81, 4121-4123 (2002).
[CrossRef]

Y. Tomita and H. Nishibiraki, "Improvement of holographic recording sensitivities in the green in SiO2 nanoparticle-dispersed methacrylate photopolymers doped with pyrromethene dyes," Appl. Phys. Lett. 83, 410-412 (2003).
[CrossRef]

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, "Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage," Appl. Phys. Lett. 88, 071103 (2006).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Electron. Lett. (1)

G. D. G. Riddy and L. Solymar, "Theoretical model of reconstructured scatter in volume holograms," Electron. Lett. 22, 872-873 (1986).
[CrossRef]

Ferroelectrics (1)

N. Kukhtarev, V. Markov, S. Odoulov, M. Soskin, and V. Vinetskii, "Holographic storage in electrooptic crystals. II. Beam coupling-light amplification," Ferroelectrics 22, 961-964 (1979).
[CrossRef]

High. Energy Chem. (1)

V. A. Barachevskii, "Photopolymerizable recording media for three-dimensional holographic optical memory," High. Energy Chem. 40, 131-141 (2006).
[CrossRef]

J. Appl. Spectrosc. (1)

E. S. Gyul'nazarov, T. N. Smirnova, D. V. Surovtsev, and E. A. Tkhonov, "Light scattering in holograms written on photopolymerizing compositions," J. Appl. Spectrosc. 51, 728-733 (1989).
[CrossRef]

J. Mod. Opt. (2)

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, and A. Fimia, "A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography," J. Mod. Opt. 45, 2345-2354 (1998).
[CrossRef]

L. B. Au, J. C. W. Newell, and L. Solymar, "Non-uniformities in thick dichromated gelatin transmission gratings," J. Mod. Opt. 34, 1211-1225 (1987).
[CrossRef]

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

J. Phys. Chem. (1)

T. Kyprianidou-Leodidou, W. Caseri, and U. W. Suter, "Size variations of PbS particles in high-refractive-index nanocomposites," J. Phys. Chem. 98, 8992-8997 (1994).
[CrossRef]

Opt. Commun. (3)

R. R. A. Syms and L. Solymar, "Noise gratings in photographic emulsions," Opt. Commun. 43, 107-110 (1982).
[CrossRef]

M. R. B. Forshaw, "Explanation of the "Venetial blind" effect in holography using the Ewald sphere concept," Opt. Commun. 8, 201-206 (1973).
[CrossRef]

L. Solymar and J. C. W. Newell, "Silver halide noise gratings recorded in dichromated gelatin," Opt. Commun. 73, 273-276 (1989).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Opt. Spectrosc. (1)

A. P. Yakimovich, "Dynamic self-amplification of scattering noise in voume-hologram recording," Opt. Spectrosc. 49, 191-193 (1980).

Optik (1)

K. Biedermann, "The scattered flux spectrum of photographic materials for holography," Optik 31, 367-389 (1970).

Phys. Rev. B (1)

M. Fally, M. A. Ellaban, R. A. Rupp, M. Fink, and J. Wolfberger, "Characterization of parasitic grating in LiNbO3," Phys. Rev. B 61, 15778-15784 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

M. Imlau, Th. Woike, R. Schieder, and R. A. Rupp, "Holographic scattering in centrosymmetric Na2[Fe(CN)5NO] · 2H2O," Phys. Rev. Lett. 82, 2860-2863 (1999).
[CrossRef]

Proc. SPIE (1)

J. A. Frantz, R. K. Kostuk, and D. A. Waldman, "Coherent scattering properties of a cationic ring-opening volume holographic recording material," Proc. SPIE 4296, 267-273 (2001).
[CrossRef]

RCA Rev. (1)

W. Phillips, J. J. Amodei, and D. L. Staebler, "Optical and holographic storage properties of transition metal doped lithium niobate," RCA Rev. 33, 94-109 (1972).

Rec. Chem. Prog. (1)

W. Heller, "Elements of the theory of light scattering. I. Scattering in gases, liquids, solutions, and dispersions of small particles," Rec. Chem. Prog. 20, 209-233 (1959).

Sov. J. Quantum Electron. (2)

T. N. Smirnova and E. A. Tikhonov, "Conical scattering of laser beams in active solutions," Sov. J. Quantum Electron. 9, 93-97 (1979).
[CrossRef]

V. Voronov, I. Dorosh, Yu. Kuz'minov, and N. Tkachenko, "Photoinduced light scattering in cerium-doped barium strontium niobate crystals," Sov. J. Quantum Electron. 10, 1346-1349 (1980).
[CrossRef]

Other (1)

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Transmittance changes as a function of exposure fluence under incoherent (dotted curve) and coherent (solid curve) illumination. Mechanical film thicknesses of the two samples under the former and latter illumination were 109 and 96 μm , respectively.

Fig. 2
Fig. 2

(Color online) Temporal evolution of cross section of the transmitted light when the two-beam exposure started at 0 s. Two bright spots observed at 1 s correspond to the two transmitted beams.

Fig. 3
Fig. 3

(Color online) Schematic explanation of observed holographic scattering in terms of the concept of the Ewald sphere construction.

Fig. 4
Fig. 4

(Color online) Steady-state scattering loss versus film thickness for SiO 2 nanoparticle-dispersed photopolymer samples for several concentrations (×, 11 vol.%; •, 20 vol.%; ∘, 34 vol.%) of SiO 2 nanoparticles. (a) Curing was made under incoherent and uniform ( 365 - nm LED) illumination. Each curve correspond to the least-squares fit of the Rayleigh scattering formula to each data. (b) Curing was made under coherent two-beam illumination. The total recording intensity was 100 mW / cm 2 for both incoherent and coherent exposure cases.

Fig. 5
Fig. 5

(Color online) Steady-state diffraction efficiencies as a function of Bragg-angle detuning for samples of (a) 46 - μm and (b) 197 - μm thicknesses with the SiO 2 nanoparticle concentration of 34 vol.%. The solid curve shown in (a) and (b) is the least-squares fit of Kogelnik's (Uchida's) formula to the data. The total recording intensity was 100 mW / cm 2 .

Metrics