Abstract

Electro-optic (EO) modulation devices, which utilize an external electric field to modulate a beam of optical radiation, are strongly affected by parasitic effects, which change the polarization state of the optical beam. As a result, very small changes in the birefringence or optical path length within the EO material can result in very large fluctuations of the amplitude and phase of the optical modulation signal. A method of actively analyzing the modulated beam is described and demonstrated, which eliminates these fluctuations and keeps the modulation device stably operating at its peak responsivity. Applications to electric field detection and measurements are discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband modulation of light by using an electro-optic polymer," Science 298, 1401-1403 (2002).
    [CrossRef] [PubMed]
  2. A. Nahata, J. T. Yardley, and T. F. Heinz, "Two-dimensional imaging of continuous-wave terahertz radiation using electro-optic detection," Appl. Phys. Lett. 81, 963-965 (2002).
    [CrossRef]
  3. D. A. Scrymgeour, Y. Barad, V. Gopalan, K. T. Gahagan, Q. Jia, T. E. Mitchell, and J. M. Robinson, "Large-angle electro-optic laser scanner on LiTaO3 fabricated by in situ monitoring of ferroelectric-domain micropatterning," Appl. Opt. 40, 6237-6241 (2001).
    [CrossRef]
  4. X. Yan, A. M. MacLeod, W. A. Gillespie, G. M. H. Knippels, D. Oepts, A. F. G. van der Meer, and W. Seidel, "Subpicosecond electro-optic measurement of relativistic electron pulses," Phys. Rev. Lett. 85, 3404-3407 (2000).
    [CrossRef] [PubMed]
  5. A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, "Piezo-induced sensitivity enhancements in electro-optic field sensors," J. Appl. Phys. 98, 043113 (2005).
    [CrossRef]
  6. A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, "The effects of photorefraction on electro-optic field sensors," J. Appl. Phys. 97, 113108 (2005).
    [CrossRef]
  7. A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, "Spatial and temporal sensitivity variations in photorefractive electro-optic field sensors," Appl. Phys. Lett. 88, 141106 (2006).
    [CrossRef]
  8. A. Garzarella, S. B. Qadri, T. J. Wieting, D. H. Wu, and R. J. Hinton, "Dielectrically induced sensitivity enhancements in electro-optic field sensors," Opt. Lett. 32, 964-966 (2007).
    [CrossRef] [PubMed]

2007 (1)

2006 (1)

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, "Spatial and temporal sensitivity variations in photorefractive electro-optic field sensors," Appl. Phys. Lett. 88, 141106 (2006).
[CrossRef]

2005 (2)

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, "Piezo-induced sensitivity enhancements in electro-optic field sensors," J. Appl. Phys. 98, 043113 (2005).
[CrossRef]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, "The effects of photorefraction on electro-optic field sensors," J. Appl. Phys. 97, 113108 (2005).
[CrossRef]

2002 (2)

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband modulation of light by using an electro-optic polymer," Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

A. Nahata, J. T. Yardley, and T. F. Heinz, "Two-dimensional imaging of continuous-wave terahertz radiation using electro-optic detection," Appl. Phys. Lett. 81, 963-965 (2002).
[CrossRef]

2001 (1)

D. A. Scrymgeour, Y. Barad, V. Gopalan, K. T. Gahagan, Q. Jia, T. E. Mitchell, and J. M. Robinson, "Large-angle electro-optic laser scanner on LiTaO3 fabricated by in situ monitoring of ferroelectric-domain micropatterning," Appl. Opt. 40, 6237-6241 (2001).
[CrossRef]

2000 (1)

X. Yan, A. M. MacLeod, W. A. Gillespie, G. M. H. Knippels, D. Oepts, A. F. G. van der Meer, and W. Seidel, "Subpicosecond electro-optic measurement of relativistic electron pulses," Phys. Rev. Lett. 85, 3404-3407 (2000).
[CrossRef] [PubMed]

Barad, Y.

D. A. Scrymgeour, Y. Barad, V. Gopalan, K. T. Gahagan, Q. Jia, T. E. Mitchell, and J. M. Robinson, "Large-angle electro-optic laser scanner on LiTaO3 fabricated by in situ monitoring of ferroelectric-domain micropatterning," Appl. Opt. 40, 6237-6241 (2001).
[CrossRef]

Erben, C.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband modulation of light by using an electro-optic polymer," Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Gahagan, K. T.

D. A. Scrymgeour, Y. Barad, V. Gopalan, K. T. Gahagan, Q. Jia, T. E. Mitchell, and J. M. Robinson, "Large-angle electro-optic laser scanner on LiTaO3 fabricated by in situ monitoring of ferroelectric-domain micropatterning," Appl. Opt. 40, 6237-6241 (2001).
[CrossRef]

Garzarella, A.

A. Garzarella, S. B. Qadri, T. J. Wieting, D. H. Wu, and R. J. Hinton, "Dielectrically induced sensitivity enhancements in electro-optic field sensors," Opt. Lett. 32, 964-966 (2007).
[CrossRef] [PubMed]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, "Spatial and temporal sensitivity variations in photorefractive electro-optic field sensors," Appl. Phys. Lett. 88, 141106 (2006).
[CrossRef]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, "The effects of photorefraction on electro-optic field sensors," J. Appl. Phys. 97, 113108 (2005).
[CrossRef]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, "Piezo-induced sensitivity enhancements in electro-optic field sensors," J. Appl. Phys. 98, 043113 (2005).
[CrossRef]

Gill, D. M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband modulation of light by using an electro-optic polymer," Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Gillespie, W. A.

X. Yan, A. M. MacLeod, W. A. Gillespie, G. M. H. Knippels, D. Oepts, A. F. G. van der Meer, and W. Seidel, "Subpicosecond electro-optic measurement of relativistic electron pulses," Phys. Rev. Lett. 85, 3404-3407 (2000).
[CrossRef] [PubMed]

Gopalan, P.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband modulation of light by using an electro-optic polymer," Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Gopalan, V.

D. A. Scrymgeour, Y. Barad, V. Gopalan, K. T. Gahagan, Q. Jia, T. E. Mitchell, and J. M. Robinson, "Large-angle electro-optic laser scanner on LiTaO3 fabricated by in situ monitoring of ferroelectric-domain micropatterning," Appl. Opt. 40, 6237-6241 (2001).
[CrossRef]

Heber, J. D.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband modulation of light by using an electro-optic polymer," Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Heinz, T. F.

A. Nahata, J. T. Yardley, and T. F. Heinz, "Two-dimensional imaging of continuous-wave terahertz radiation using electro-optic detection," Appl. Phys. Lett. 81, 963-965 (2002).
[CrossRef]

Hinton, R. J.

Jia, Q.

D. A. Scrymgeour, Y. Barad, V. Gopalan, K. T. Gahagan, Q. Jia, T. E. Mitchell, and J. M. Robinson, "Large-angle electro-optic laser scanner on LiTaO3 fabricated by in situ monitoring of ferroelectric-domain micropatterning," Appl. Opt. 40, 6237-6241 (2001).
[CrossRef]

Katz, H. E.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband modulation of light by using an electro-optic polymer," Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Knippels, G. M. H.

X. Yan, A. M. MacLeod, W. A. Gillespie, G. M. H. Knippels, D. Oepts, A. F. G. van der Meer, and W. Seidel, "Subpicosecond electro-optic measurement of relativistic electron pulses," Phys. Rev. Lett. 85, 3404-3407 (2000).
[CrossRef] [PubMed]

Lee, M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband modulation of light by using an electro-optic polymer," Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

MacLeod, A. M.

X. Yan, A. M. MacLeod, W. A. Gillespie, G. M. H. Knippels, D. Oepts, A. F. G. van der Meer, and W. Seidel, "Subpicosecond electro-optic measurement of relativistic electron pulses," Phys. Rev. Lett. 85, 3404-3407 (2000).
[CrossRef] [PubMed]

McGee, D. J.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband modulation of light by using an electro-optic polymer," Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Mitchell, T. E.

D. A. Scrymgeour, Y. Barad, V. Gopalan, K. T. Gahagan, Q. Jia, T. E. Mitchell, and J. M. Robinson, "Large-angle electro-optic laser scanner on LiTaO3 fabricated by in situ monitoring of ferroelectric-domain micropatterning," Appl. Opt. 40, 6237-6241 (2001).
[CrossRef]

Nahata, A.

A. Nahata, J. T. Yardley, and T. F. Heinz, "Two-dimensional imaging of continuous-wave terahertz radiation using electro-optic detection," Appl. Phys. Lett. 81, 963-965 (2002).
[CrossRef]

Oepts, D.

X. Yan, A. M. MacLeod, W. A. Gillespie, G. M. H. Knippels, D. Oepts, A. F. G. van der Meer, and W. Seidel, "Subpicosecond electro-optic measurement of relativistic electron pulses," Phys. Rev. Lett. 85, 3404-3407 (2000).
[CrossRef] [PubMed]

Qadri, S. B.

A. Garzarella, S. B. Qadri, T. J. Wieting, D. H. Wu, and R. J. Hinton, "Dielectrically induced sensitivity enhancements in electro-optic field sensors," Opt. Lett. 32, 964-966 (2007).
[CrossRef] [PubMed]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, "Spatial and temporal sensitivity variations in photorefractive electro-optic field sensors," Appl. Phys. Lett. 88, 141106 (2006).
[CrossRef]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, "The effects of photorefraction on electro-optic field sensors," J. Appl. Phys. 97, 113108 (2005).
[CrossRef]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, "Piezo-induced sensitivity enhancements in electro-optic field sensors," J. Appl. Phys. 98, 043113 (2005).
[CrossRef]

Robinson, J. M.

D. A. Scrymgeour, Y. Barad, V. Gopalan, K. T. Gahagan, Q. Jia, T. E. Mitchell, and J. M. Robinson, "Large-angle electro-optic laser scanner on LiTaO3 fabricated by in situ monitoring of ferroelectric-domain micropatterning," Appl. Opt. 40, 6237-6241 (2001).
[CrossRef]

Scrymgeour, D. A.

D. A. Scrymgeour, Y. Barad, V. Gopalan, K. T. Gahagan, Q. Jia, T. E. Mitchell, and J. M. Robinson, "Large-angle electro-optic laser scanner on LiTaO3 fabricated by in situ monitoring of ferroelectric-domain micropatterning," Appl. Opt. 40, 6237-6241 (2001).
[CrossRef]

Seidel, W.

X. Yan, A. M. MacLeod, W. A. Gillespie, G. M. H. Knippels, D. Oepts, A. F. G. van der Meer, and W. Seidel, "Subpicosecond electro-optic measurement of relativistic electron pulses," Phys. Rev. Lett. 85, 3404-3407 (2000).
[CrossRef] [PubMed]

van der Meer, A. F. G.

X. Yan, A. M. MacLeod, W. A. Gillespie, G. M. H. Knippels, D. Oepts, A. F. G. van der Meer, and W. Seidel, "Subpicosecond electro-optic measurement of relativistic electron pulses," Phys. Rev. Lett. 85, 3404-3407 (2000).
[CrossRef] [PubMed]

Wieting, T. J.

A. Garzarella, S. B. Qadri, T. J. Wieting, D. H. Wu, and R. J. Hinton, "Dielectrically induced sensitivity enhancements in electro-optic field sensors," Opt. Lett. 32, 964-966 (2007).
[CrossRef] [PubMed]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, "Spatial and temporal sensitivity variations in photorefractive electro-optic field sensors," Appl. Phys. Lett. 88, 141106 (2006).
[CrossRef]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, "The effects of photorefraction on electro-optic field sensors," J. Appl. Phys. 97, 113108 (2005).
[CrossRef]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, "Piezo-induced sensitivity enhancements in electro-optic field sensors," J. Appl. Phys. 98, 043113 (2005).
[CrossRef]

Wu, D. H.

A. Garzarella, S. B. Qadri, T. J. Wieting, D. H. Wu, and R. J. Hinton, "Dielectrically induced sensitivity enhancements in electro-optic field sensors," Opt. Lett. 32, 964-966 (2007).
[CrossRef] [PubMed]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, "Spatial and temporal sensitivity variations in photorefractive electro-optic field sensors," Appl. Phys. Lett. 88, 141106 (2006).
[CrossRef]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, "The effects of photorefraction on electro-optic field sensors," J. Appl. Phys. 97, 113108 (2005).
[CrossRef]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, "Piezo-induced sensitivity enhancements in electro-optic field sensors," J. Appl. Phys. 98, 043113 (2005).
[CrossRef]

Yan, X.

X. Yan, A. M. MacLeod, W. A. Gillespie, G. M. H. Knippels, D. Oepts, A. F. G. van der Meer, and W. Seidel, "Subpicosecond electro-optic measurement of relativistic electron pulses," Phys. Rev. Lett. 85, 3404-3407 (2000).
[CrossRef] [PubMed]

Yardley, J. T.

A. Nahata, J. T. Yardley, and T. F. Heinz, "Two-dimensional imaging of continuous-wave terahertz radiation using electro-optic detection," Appl. Phys. Lett. 81, 963-965 (2002).
[CrossRef]

Appl. Opt. (1)

D. A. Scrymgeour, Y. Barad, V. Gopalan, K. T. Gahagan, Q. Jia, T. E. Mitchell, and J. M. Robinson, "Large-angle electro-optic laser scanner on LiTaO3 fabricated by in situ monitoring of ferroelectric-domain micropatterning," Appl. Opt. 40, 6237-6241 (2001).
[CrossRef]

Appl. Phys. Lett. (2)

A. Nahata, J. T. Yardley, and T. F. Heinz, "Two-dimensional imaging of continuous-wave terahertz radiation using electro-optic detection," Appl. Phys. Lett. 81, 963-965 (2002).
[CrossRef]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, "Spatial and temporal sensitivity variations in photorefractive electro-optic field sensors," Appl. Phys. Lett. 88, 141106 (2006).
[CrossRef]

J. Appl. Phys. (2)

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, "Piezo-induced sensitivity enhancements in electro-optic field sensors," J. Appl. Phys. 98, 043113 (2005).
[CrossRef]

A. Garzarella, S. B. Qadri, T. J. Wieting, and D. H. Wu, "The effects of photorefraction on electro-optic field sensors," J. Appl. Phys. 97, 113108 (2005).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (1)

X. Yan, A. M. MacLeod, W. A. Gillespie, G. M. H. Knippels, D. Oepts, A. F. G. van der Meer, and W. Seidel, "Subpicosecond electro-optic measurement of relativistic electron pulses," Phys. Rev. Lett. 85, 3404-3407 (2000).
[CrossRef] [PubMed]

Science (1)

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband modulation of light by using an electro-optic polymer," Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Basic configuration of an EO field sensor. The electric field is detected optically through a change in birefringence it induces on an EO crystal. A probe beam and crossed polarizers (P1 and P2) convert the change of birefringence into an optical modulation signal. In high sensitivity applications, this setup is highly susceptible to temporal instabilities due to polarization drift.

Fig. 2
Fig. 2

(Color online) Output signal from an LiNbO 3 EO field sensor under a 600 ps rise time impulse electric field (pulse height = 10 kV / m ). Bottom trace: voltage signal from impulse generator (used as reference trigger), Top trace: modulated beam intensity produced by sensor. Because of the proportional relation between optical modulation and applied field, the EO sensor output signal precisely replicates the field transients in real time.

Fig. 3
Fig. 3

(Color online) Free space and fiber-attached EO field sensor heads. A dielectric mirror is used to reflect the probe beam back through the crystal in the free space sensor, which increases sensitivity by doubling the optical path length.

Fig. 4
Fig. 4

Amplitude of the optical modulation signal produced by a LiNbO 3 EO field sensor under a 2   kHz sinusoidal electric field. (A) Crossed-polarizer configuration of Fig. 1, with analyzer (P2) at a fixed rotation angle. (B) Quarter-wave plate in optical circuit, with a motorized analyzer (P2) programmed to sustain the transmittance midpoint, as described in the text. The variations in (A), which are due to polarization drifts, are corrected by the analyzing algorithm in (B), allowing the EO sensor to operate stably at its peak responsivity.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

p 0 = 1 2 [ 1 + c 1   sin   ϕ 0 + c 2   cos   ϕ 0 ] ,
m = [ c 1   cos   ϕ 0 c 2   sin   ϕ 0 ] sin ( ϕ EO 2 ) ,
p 0 = 1 2 [ 1 + sin ( 2 θ p + ϕ 0 ) ] ,
m = cos ( 2 θ p + ϕ 0 ) sin [ ϕ EO 2 ] ,

Metrics