Abstract

Through a series of numerical simulations we explore some scatter effects due to nonspherical particles. Specifically, we examine the link between the aspect ratio of randomly oriented, prolate spheroidal particles and the resulting linear depolarization of the scattered light in the forward and backscatter directions. The particular objective is to detect the presence of randomly oriented particles that have a systematic size and aspect ratio. Calculations show that the spectral behavior of the linear depolarization reveals the aspect ratio of the scattering particles. The concept is demonstrated using the size, shape, and refractive index of the spore form of Bacillus globigii (BG).

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. "Bioterrorism agents/diseases," Department of Health and Human Services, Centers for Disease Control and Prevention, http://www.bt.cdc.gov/Agent/agentlist.asp.
  2. P. Vukusic, J. R. Sambles, and C. R. Lawrence, "Color mixing in wing scales of a butterfly," Nature 404, 457 (2000).
    [CrossRef] [PubMed]
  3. P. M. Pilarski and C. J. Backhouse, "A method for cytometric image parameterization," Opt. Express 14, 12720-12743 (2006).
    [CrossRef] [PubMed]
  4. J. D. Keener, K. J. Chalut, J. W. Pyhtila, and A. Wax, "Application of Mie theory to determine the structure of spheroidal scatterers in biological materials," Opt. Lett. 32, 1326-1328 (2007).
    [CrossRef] [PubMed]
  5. K. Sassen, "The polarization lidar technique for cloud research: a review and current assessment," Bull. Am. Meteorol. Soc. 72, 1848-1866 (1991).
    [CrossRef]
  6. A. Battaglia, O. Sturniolo, and F. Prodi, "Analysis of polarization radar returns from ice clouds," Atmos. Res. 49-60, 231-250 (2001).
    [CrossRef]
  7. D. Müeller, U. Wandinger, D. Althausen, I. Mattis, and A. Ansmann, "Retrieval of physical particle properties from lidar observations of extinction and backscatter at multiple wavelengths," Appl. Opt. 37, 2260-2263 (1998).
    [CrossRef]
  8. L. Kolokolova, M. S. Hanner, A.-C. Levasseur-Regourd, and B. Å. S. Gustafson, "Physical properties of cometary dust from light scattering and thermal emission," in Comets II, M. C. Festou, H. U. Keller, and H. A. Weaver, eds. (University of Arizona Press, 2004).
  9. D. Guirado, J. W. Hovenier, and F. Moreno, "Circular polarization of light scattered by asymmetrical particles," J. Quant. Spectrosc. Radiat. Transfer 106, 63-73 (2007).
    [CrossRef]
  10. W. S. Bickel, J. F. Davidson, D. R. Huffman, and R. Kolkson, "Application of polarization effects in light scattering: a new biophysical tool," Proc. Natl. Acad. Sci. U.S.A. 73, 486-490 (1976).
    [CrossRef] [PubMed]
  11. S. Asano, "Light scattering properties of spheroidal particles," Appl. Opt. 18, 712-723 (1979).
    [CrossRef] [PubMed]
  12. S. Asano and S. Makoto, "Light scattering by randomly oriented spheroidal particles," Appl. Opt. 19, 962-974 (1980).
    [CrossRef] [PubMed]
  13. M. I. Mischenko and J. W. Hovenier, "Depolarization of light backscattered by randomly oriented nonspherical particles," Opt. Let. 20, 1356-1359 (1995).
    [CrossRef]
  14. M. E. Thomas and D. D. Duncan, "Atmospheric transmission," in Atmospheric Propagation of Radiation, Volume 2 of the Infrared & Electro-Optical Systems Handbook, F.G.Smith, ed. (ERIM Infrared Information Analysis Center and SPIE, 1993).
  15. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).
  16. M. I. Mishchenko and L. D. Travis, "Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers," J. Quant. Spectrosc. Radiat. Transfer 60, 309-324 (1998).
    [CrossRef]
  17. FORTRAN T-matrix codes publicly available at http://www.giss.nasa.gov/∼crmim.
  18. A. M. K. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, "T-matrix computations of light scattering by red blood cells," Appl. Opt. 37, 2735-2748 (1998).
    [CrossRef]
  19. N. V. Voshchinnikov, V. B. Il'in, Th. Henning, B. Michel, and V. G. Farafonov, "Extinction and polarization of radiation by absorbing spheroids: shape/size effects and benchmark results," J. Quant. Spectrosc. Radiat. Transfer 65, 877-893 (2000).
    [CrossRef]
  20. P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, "Optical properties of Bacillus subtilis spores from 0.2 to 2.5 μm," Appl. Opt. 36, 2818-2824 (1997).
    [CrossRef] [PubMed]
  21. M. E. Thomas, M. B. Airola, N. T. Boggs, C. C. Carter, and J. E. Steinberg, "Complex refractive index of biological materials," in Proceedings of the 7th Joint Conference on Standoff Detection for Chemical and Biological Defense, Williamsburg, Virginia, USA (2006).
    [PubMed]
  22. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).
  23. F. Barnaba and G. P. Gobbi, "Lidar estimation of tropospheric aerosol extinction, surface area and volume: Maritime and desert-dust cases," J. Geophys. Res. 106, 3005-3018 (2001).
    [CrossRef]
  24. L. D. Harder, "Pollen-size comparisons among animal pollinated angiosperms with different pollination characteristics," Biol. J. Linn. Soc. 64, 513-525 (1998).
    [CrossRef]
  25. M. I. Mischenko, "Light scattering by size-shape distributions of randomly oriented axially symmetric particles of a size comparable to a wavelength," Appl. Opt. 32, 4652-4666 (1993).
    [CrossRef]

2007 (2)

J. D. Keener, K. J. Chalut, J. W. Pyhtila, and A. Wax, "Application of Mie theory to determine the structure of spheroidal scatterers in biological materials," Opt. Lett. 32, 1326-1328 (2007).
[CrossRef] [PubMed]

D. Guirado, J. W. Hovenier, and F. Moreno, "Circular polarization of light scattered by asymmetrical particles," J. Quant. Spectrosc. Radiat. Transfer 106, 63-73 (2007).
[CrossRef]

2006 (1)

P. M. Pilarski and C. J. Backhouse, "A method for cytometric image parameterization," Opt. Express 14, 12720-12743 (2006).
[CrossRef] [PubMed]

2001 (2)

A. Battaglia, O. Sturniolo, and F. Prodi, "Analysis of polarization radar returns from ice clouds," Atmos. Res. 49-60, 231-250 (2001).
[CrossRef]

F. Barnaba and G. P. Gobbi, "Lidar estimation of tropospheric aerosol extinction, surface area and volume: Maritime and desert-dust cases," J. Geophys. Res. 106, 3005-3018 (2001).
[CrossRef]

2000 (2)

N. V. Voshchinnikov, V. B. Il'in, Th. Henning, B. Michel, and V. G. Farafonov, "Extinction and polarization of radiation by absorbing spheroids: shape/size effects and benchmark results," J. Quant. Spectrosc. Radiat. Transfer 65, 877-893 (2000).
[CrossRef]

P. Vukusic, J. R. Sambles, and C. R. Lawrence, "Color mixing in wing scales of a butterfly," Nature 404, 457 (2000).
[CrossRef] [PubMed]

1998 (4)

D. Müeller, U. Wandinger, D. Althausen, I. Mattis, and A. Ansmann, "Retrieval of physical particle properties from lidar observations of extinction and backscatter at multiple wavelengths," Appl. Opt. 37, 2260-2263 (1998).
[CrossRef]

L. D. Harder, "Pollen-size comparisons among animal pollinated angiosperms with different pollination characteristics," Biol. J. Linn. Soc. 64, 513-525 (1998).
[CrossRef]

M. I. Mishchenko and L. D. Travis, "Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers," J. Quant. Spectrosc. Radiat. Transfer 60, 309-324 (1998).
[CrossRef]

A. M. K. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, "T-matrix computations of light scattering by red blood cells," Appl. Opt. 37, 2735-2748 (1998).
[CrossRef]

1997 (1)

1995 (1)

M. I. Mischenko and J. W. Hovenier, "Depolarization of light backscattered by randomly oriented nonspherical particles," Opt. Let. 20, 1356-1359 (1995).
[CrossRef]

1993 (1)

1991 (1)

K. Sassen, "The polarization lidar technique for cloud research: a review and current assessment," Bull. Am. Meteorol. Soc. 72, 1848-1866 (1991).
[CrossRef]

1980 (1)

1979 (1)

1976 (1)

W. S. Bickel, J. F. Davidson, D. R. Huffman, and R. Kolkson, "Application of polarization effects in light scattering: a new biophysical tool," Proc. Natl. Acad. Sci. U.S.A. 73, 486-490 (1976).
[CrossRef] [PubMed]

Appl. Opt. (6)

Atmos. Res. (1)

A. Battaglia, O. Sturniolo, and F. Prodi, "Analysis of polarization radar returns from ice clouds," Atmos. Res. 49-60, 231-250 (2001).
[CrossRef]

Biol. J. Linn. Soc. (1)

L. D. Harder, "Pollen-size comparisons among animal pollinated angiosperms with different pollination characteristics," Biol. J. Linn. Soc. 64, 513-525 (1998).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

K. Sassen, "The polarization lidar technique for cloud research: a review and current assessment," Bull. Am. Meteorol. Soc. 72, 1848-1866 (1991).
[CrossRef]

J. Geophys. Res. (1)

F. Barnaba and G. P. Gobbi, "Lidar estimation of tropospheric aerosol extinction, surface area and volume: Maritime and desert-dust cases," J. Geophys. Res. 106, 3005-3018 (2001).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (3)

N. V. Voshchinnikov, V. B. Il'in, Th. Henning, B. Michel, and V. G. Farafonov, "Extinction and polarization of radiation by absorbing spheroids: shape/size effects and benchmark results," J. Quant. Spectrosc. Radiat. Transfer 65, 877-893 (2000).
[CrossRef]

D. Guirado, J. W. Hovenier, and F. Moreno, "Circular polarization of light scattered by asymmetrical particles," J. Quant. Spectrosc. Radiat. Transfer 106, 63-73 (2007).
[CrossRef]

M. I. Mishchenko and L. D. Travis, "Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers," J. Quant. Spectrosc. Radiat. Transfer 60, 309-324 (1998).
[CrossRef]

Nature (1)

P. Vukusic, J. R. Sambles, and C. R. Lawrence, "Color mixing in wing scales of a butterfly," Nature 404, 457 (2000).
[CrossRef] [PubMed]

Opt. Express (1)

P. M. Pilarski and C. J. Backhouse, "A method for cytometric image parameterization," Opt. Express 14, 12720-12743 (2006).
[CrossRef] [PubMed]

Opt. Let. (1)

M. I. Mischenko and J. W. Hovenier, "Depolarization of light backscattered by randomly oriented nonspherical particles," Opt. Let. 20, 1356-1359 (1995).
[CrossRef]

Opt. Lett. (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

W. S. Bickel, J. F. Davidson, D. R. Huffman, and R. Kolkson, "Application of polarization effects in light scattering: a new biophysical tool," Proc. Natl. Acad. Sci. U.S.A. 73, 486-490 (1976).
[CrossRef] [PubMed]

Other (7)

L. Kolokolova, M. S. Hanner, A.-C. Levasseur-Regourd, and B. Å. S. Gustafson, "Physical properties of cometary dust from light scattering and thermal emission," in Comets II, M. C. Festou, H. U. Keller, and H. A. Weaver, eds. (University of Arizona Press, 2004).

M. E. Thomas and D. D. Duncan, "Atmospheric transmission," in Atmospheric Propagation of Radiation, Volume 2 of the Infrared & Electro-Optical Systems Handbook, F.G.Smith, ed. (ERIM Infrared Information Analysis Center and SPIE, 1993).

C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).

FORTRAN T-matrix codes publicly available at http://www.giss.nasa.gov/∼crmim.

M. E. Thomas, M. B. Airola, N. T. Boggs, C. C. Carter, and J. E. Steinberg, "Complex refractive index of biological materials," in Proceedings of the 7th Joint Conference on Standoff Detection for Chemical and Biological Defense, Williamsburg, Virginia, USA (2006).
[PubMed]

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

"Bioterrorism agents/diseases," Department of Health and Human Services, Centers for Disease Control and Prevention, http://www.bt.cdc.gov/Agent/agentlist.asp.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Spheroidal particle illustration.

Fig. 2
Fig. 2

Complex refractive index for BG.

Fig. 3
Fig. 3

(Color online) Linear depolarization in the forward direction as a function of wavelength and particle aspect ratio.

Fig. 4
Fig. 4

(Color online) Illustration of fine scale structure in depolarization as a function of the x parameter for various aspect ratios.

Fig. 5
Fig. 5

(Color online) Linear depolarization for an aspect ratio of 1.5 and a fourth-order polynomial fit.

Fig. 6
Fig. 6

(Color online) Residual of fit to depolarization for an aspect ratio of 1.5.

Fig. 7
Fig. 7

(Color online) Frequency components of depolarization fine scale structure for an aspect ratio of 1.5.

Fig. 8
Fig. 8

(Color online) Periods of two major spectral components of depolarization fine scale structure as a function of particle aspect ratio and corresponding power-law fits.

Fig. 9
Fig. 9

(Color online) Linear depolarization in the backscatter direction as a function of wavelength and particle aspect ratio.

Fig. 10
Fig. 10

(Color online) Periods of depolarization fine scale structure and power-law fits for backscatter. These results are analogous to those shown in Fig. 9.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

I = | I Q U V | ,
I = | E | 2 + | E | 2 ,
Q = | E | 2 | E | 2 ,
U = E E * + E E * ,
V = i ( E E * E E * ) ,
I s c a = C s c a N d v 4 π R 2 F ( θ ) I i n c ,
F ( θ ) = | F 11 ( θ ) F 12 ( θ ) 0 0 F 12 ( θ ) F 22 ( θ ) 0 0 0 0 F 33 ( θ ) F 34 ( θ ) 0 0 F 34 ( θ ) F 44 ( θ ) | .
D ( θ ) = 1 F 22 ( θ ) / F 11 ( θ ) .
F ( θ ) = | F 11 ( θ ) F 12 ( θ ) 0 0 F 12 ( θ ) F 11 ( θ ) 0 0 0 0 F 33 ( θ ) F 34 ( θ ) 0 0 F 34 ( θ ) F 33 ( θ ) | ,
V = 4 3 π r 3 = 4 3 π a b 2 .
a = ε 2 / 3 r ,
b = ε 1 / 3 r .
T a = c a ( a / r ) v a = c a ( ε 2 / 3 ) v a ,
T b = c b ( b / r ) v b = c b ( ε 1 / 3 ) v b .
c a = 0.30 , v a = 0.709 ,
c b = 0.866 , v b = 1.69 .
T a / T b = ( c a / c b ) ε ( 2 v a / 3 ) + ( v b / 3 ) = 0.842 ε 1.04 .
c a = 0.922 , v a = 0.709 ,
c b = 7.78 , v b = 4.23 .
T a / T b = ( c a / c b ) ε ( 2 v a / 3 ) + ( v b / 3 ) = 0.118 ε 1.88 .
T a = 0.581 ε 0.453 r 0.285 , T b = 0.872 ε 0.516 r 0.0335 ,
T a / T b = 0.668 ε 0.970 r 0.319 ,
T a = 0.931 ε 0.331 r 0.101 , T b = 14.6 ε 1.66 r 0.573 ,
T a / T b = 0.0636 ε 1.99 r 0.675 .

Metrics