Abstract

A doubly Q-switched laser with both an acousto-optic (AO) modulator and a GaAs saturable absorber can obtain a more symmetric and shorter pulse with high pulse peak power, which has been experimentally proved. The key parameters of an optimally coupled doubly Q-switched laser with both an AO modulator and a GaAs saturable absorber are determined, and a group of general curves are generated for what we believe is the first time, when the single-photon absorption (SPA) and two-photon absorption (TPA) processes of GaAs are combined, and the Gaussian spatial distributions of the intracavity photon density and the initial population-inversion density as well as the influence of the AO Q-switch are considered. These key parameters include the optimal normalized coupling parameter, the optimal normalized GaAs saturable absorber parameters, and the normalized parameters of the AO Q-switch, which can maximize the output energy. Meanwhile, the corresponding normalized energy, the normalized peak power, and the normalized pulse width are given. The curves clearly show the dependence of the optimal key parameters on the parameters of the gain medium, the GaAs saturable absorber, the AO Q-switch, and the resonator. Sample calculations for a diode-pumped Nd3+:YVO4 laser with both an AO modulator and a GaAs saturable absorber are presented to demonstrate the use of the curves and the relevant formulas.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. H. Plassmann, K. S. Yamada, C. E. Rich, and W. M. Grossman, "Subnanosecond pulse generation from diode-pumped acousto-optically Q-switched solid-state lasers," Appl. Opt. 32, 6616-6619 (1993).
    [CrossRef]
  2. T. T. Kajava and A. L. Gaeta, "Q-switching of a diode-pumped Nd:YAG laser with GaAs," Opt. Lett. 21, 1244-1246 (1996).
    [CrossRef] [PubMed]
  3. T. T. Kajava and A. L. Gaeta, "Intra-cavity frequency-doubling of a Nd:YAG laser passively Q-switched with GaAs," Opt. Commun. 137, 93-97 (1997).
    [CrossRef]
  4. L. Chen, S. Zhao, and H. Zhao, "Passively Q-switching of a laser-diode-pumped intracavity-frequency-doubling Nd:NYW/KTP laser with GaAs saturable absorber," Opt. Laser Technol. 35, 563-567 (2003).
    [CrossRef]
  5. S. Zhao, X. Zhang, J. Zheng, L. Chen, Z. Cheng, and H. Cheng, "Passively Q-switched self-frequency-doubling Nd3+:GdCa4O(BO3)3 laser with GaAs saturable absorber," Opt. Eng. 41, 559-560 (2002).
    [CrossRef]
  6. Z. Li, Z. Xiong, N. Moore, G. C. Lim, W. L. Huang, and D. X. Huang, "Pulse width reduction in AO Q-switched diode-pumped Nd:YVO4 laser with GaAs coupler," Opt. Commun. 237, 411-416 (2004).
    [CrossRef]
  7. G. Li, S. Zhao, K. Yang, and W. Wu, "Pulse width reduction in diode-pumped Nd:GdVO4 laser with AO and GaAs double Q-switches," Jpn. J. Appl. Phys. 44, 3017-3021 (2005).
    [CrossRef]
  8. G. Li, S. Zhao, K. Yang, D. Li, and J. Zou, "Pulse shape symmetry and pulse width reduction in diode-pumped doubly Q-switched Nd:YVO4/KTP green laser with AO and GaAs," Opt. Express 13, 1178-1187 (2005).
    [CrossRef] [PubMed]
  9. K. Yang, S. Zhao, and G. Li, "Pulse symmetry and pulse duration compression in a diode-pumped doubly passively Q-switched Nd:YVO4 lasers with Cr4+:YAG and GaAs saturable absorbers," Appl. Phys. B 81, 633-636 (2005).
    [CrossRef]
  10. J. J. Degnan, "Theory of the optimally coupled Q-switched lasers," IEEE J. Quantum Electron. 25, 214-220 (1989).
    [CrossRef]
  11. X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, "Optimization of Cr4+-doped saturable-absorber Q-switched lasers," IEEE J. Quantum Electron. 33, 2286-2294 (1997).
    [CrossRef]
  12. J. J. Zayhowski and P. L. Kelley, "Optimization of Q-switched lasers," IEEE J. Quantum Electron. 27, 2220-2225 (1991).
    [CrossRef]
  13. J. J. Degnan, "Optimization of passively Q-switched lasers," IEEE J. Quantum Electron. 31, 1890-1901 (1995).
    [CrossRef]
  14. J. J. Degnan, "Theory of the optimally coupled Q-switched laser," IEEE J. Quantum Electron. 25, 214-220 (1989).
    [CrossRef]
  15. M. Lukac, "Output energy characteristics of optimally pumped rotating mirror Q-switch laser," IEEE J. Quantum Electron. 27, 2094-2097 (1991).
    [CrossRef]
  16. X. Zhang, S. Zhao, Q. Wang, Y. Liu, and J. Wang, "Optimization of dye Q-switched lasers," IEEE J. Quantum Electron. 30, 905-908 (1994).
    [CrossRef]
  17. D. Li, S. Zhao, G. Li, and K. Yang, "Optimization of passively Q-switched lasers by taking into account intracavity laser spatial distribution," Opt. Quantum Electron. 37, 927-942 (2005).
    [CrossRef]
  18. X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, "Modeling of diode-pumping actively Q-switched lasers," IEEE J. Quantum Electron. 35, 1912-1918 (1999).
    [CrossRef]
  19. X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, "Modeling of passively Q-switched lasers," J. Opt. Soc. Am. B 17, 1166-1175 (2000).
    [CrossRef]
  20. D. Li, S. Zhao, G. Li, and K. Yang, "Optimization of peak power of passively Q-switched lasers by taking into account intracavity laser spatial distribution," Opt. Laser Technol. 39, 13-20 (2007).
    [CrossRef]
  21. D. Li, S. Zhao, G. Li, and K. Yang, "Optimization of the slowly actively Q-switched laser," Opt. Laser Technol. 39, 846-851 (2007).
    [CrossRef]
  22. D. Li, S. Zhao, G. Li, and K. Yang, "Optimization of doubly Q-switched lasers with both an acoustic-optic modulator and a Cr4+-doped saturable absorber," IEEE J. Quantum Electron. 42, 500-508 (2006).
    [CrossRef]
  23. D. Li, S. Zhao, G. Li, and K. Yang, "Optimization of peak power of doubly Q-switched lasers with both an acousto-optic modulator and a Cr4+-doped saturable absorber," Appl. Opt. 45, 5767-5776 (2006).
    [CrossRef] [PubMed]

2007

D. Li, S. Zhao, G. Li, and K. Yang, "Optimization of peak power of passively Q-switched lasers by taking into account intracavity laser spatial distribution," Opt. Laser Technol. 39, 13-20 (2007).
[CrossRef]

D. Li, S. Zhao, G. Li, and K. Yang, "Optimization of the slowly actively Q-switched laser," Opt. Laser Technol. 39, 846-851 (2007).
[CrossRef]

2006

D. Li, S. Zhao, G. Li, and K. Yang, "Optimization of doubly Q-switched lasers with both an acoustic-optic modulator and a Cr4+-doped saturable absorber," IEEE J. Quantum Electron. 42, 500-508 (2006).
[CrossRef]

D. Li, S. Zhao, G. Li, and K. Yang, "Optimization of peak power of doubly Q-switched lasers with both an acousto-optic modulator and a Cr4+-doped saturable absorber," Appl. Opt. 45, 5767-5776 (2006).
[CrossRef] [PubMed]

2005

G. Li, S. Zhao, K. Yang, D. Li, and J. Zou, "Pulse shape symmetry and pulse width reduction in diode-pumped doubly Q-switched Nd:YVO4/KTP green laser with AO and GaAs," Opt. Express 13, 1178-1187 (2005).
[CrossRef] [PubMed]

G. Li, S. Zhao, K. Yang, and W. Wu, "Pulse width reduction in diode-pumped Nd:GdVO4 laser with AO and GaAs double Q-switches," Jpn. J. Appl. Phys. 44, 3017-3021 (2005).
[CrossRef]

D. Li, S. Zhao, G. Li, and K. Yang, "Optimization of passively Q-switched lasers by taking into account intracavity laser spatial distribution," Opt. Quantum Electron. 37, 927-942 (2005).
[CrossRef]

K. Yang, S. Zhao, and G. Li, "Pulse symmetry and pulse duration compression in a diode-pumped doubly passively Q-switched Nd:YVO4 lasers with Cr4+:YAG and GaAs saturable absorbers," Appl. Phys. B 81, 633-636 (2005).
[CrossRef]

2004

Z. Li, Z. Xiong, N. Moore, G. C. Lim, W. L. Huang, and D. X. Huang, "Pulse width reduction in AO Q-switched diode-pumped Nd:YVO4 laser with GaAs coupler," Opt. Commun. 237, 411-416 (2004).
[CrossRef]

2003

L. Chen, S. Zhao, and H. Zhao, "Passively Q-switching of a laser-diode-pumped intracavity-frequency-doubling Nd:NYW/KTP laser with GaAs saturable absorber," Opt. Laser Technol. 35, 563-567 (2003).
[CrossRef]

2002

S. Zhao, X. Zhang, J. Zheng, L. Chen, Z. Cheng, and H. Cheng, "Passively Q-switched self-frequency-doubling Nd3+:GdCa4O(BO3)3 laser with GaAs saturable absorber," Opt. Eng. 41, 559-560 (2002).
[CrossRef]

2000

1999

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, "Modeling of diode-pumping actively Q-switched lasers," IEEE J. Quantum Electron. 35, 1912-1918 (1999).
[CrossRef]

1997

T. T. Kajava and A. L. Gaeta, "Intra-cavity frequency-doubling of a Nd:YAG laser passively Q-switched with GaAs," Opt. Commun. 137, 93-97 (1997).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, "Optimization of Cr4+-doped saturable-absorber Q-switched lasers," IEEE J. Quantum Electron. 33, 2286-2294 (1997).
[CrossRef]

1996

1995

J. J. Degnan, "Optimization of passively Q-switched lasers," IEEE J. Quantum Electron. 31, 1890-1901 (1995).
[CrossRef]

1994

X. Zhang, S. Zhao, Q. Wang, Y. Liu, and J. Wang, "Optimization of dye Q-switched lasers," IEEE J. Quantum Electron. 30, 905-908 (1994).
[CrossRef]

1993

1991

M. Lukac, "Output energy characteristics of optimally pumped rotating mirror Q-switch laser," IEEE J. Quantum Electron. 27, 2094-2097 (1991).
[CrossRef]

J. J. Zayhowski and P. L. Kelley, "Optimization of Q-switched lasers," IEEE J. Quantum Electron. 27, 2220-2225 (1991).
[CrossRef]

1989

J. J. Degnan, "Theory of the optimally coupled Q-switched lasers," IEEE J. Quantum Electron. 25, 214-220 (1989).
[CrossRef]

J. J. Degnan, "Theory of the optimally coupled Q-switched laser," IEEE J. Quantum Electron. 25, 214-220 (1989).
[CrossRef]

Appl. Opt.

Appl. Phys. B

K. Yang, S. Zhao, and G. Li, "Pulse symmetry and pulse duration compression in a diode-pumped doubly passively Q-switched Nd:YVO4 lasers with Cr4+:YAG and GaAs saturable absorbers," Appl. Phys. B 81, 633-636 (2005).
[CrossRef]

IEEE J. Quantum Electron.

J. J. Degnan, "Theory of the optimally coupled Q-switched lasers," IEEE J. Quantum Electron. 25, 214-220 (1989).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, Q. Zhang, L. Sun, and S. Zhang, "Optimization of Cr4+-doped saturable-absorber Q-switched lasers," IEEE J. Quantum Electron. 33, 2286-2294 (1997).
[CrossRef]

J. J. Zayhowski and P. L. Kelley, "Optimization of Q-switched lasers," IEEE J. Quantum Electron. 27, 2220-2225 (1991).
[CrossRef]

J. J. Degnan, "Optimization of passively Q-switched lasers," IEEE J. Quantum Electron. 31, 1890-1901 (1995).
[CrossRef]

J. J. Degnan, "Theory of the optimally coupled Q-switched laser," IEEE J. Quantum Electron. 25, 214-220 (1989).
[CrossRef]

M. Lukac, "Output energy characteristics of optimally pumped rotating mirror Q-switch laser," IEEE J. Quantum Electron. 27, 2094-2097 (1991).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, Y. Liu, and J. Wang, "Optimization of dye Q-switched lasers," IEEE J. Quantum Electron. 30, 905-908 (1994).
[CrossRef]

X. Zhang, S. Zhao, Q. Wang, B. Ozygus, and H. Weber, "Modeling of diode-pumping actively Q-switched lasers," IEEE J. Quantum Electron. 35, 1912-1918 (1999).
[CrossRef]

D. Li, S. Zhao, G. Li, and K. Yang, "Optimization of doubly Q-switched lasers with both an acoustic-optic modulator and a Cr4+-doped saturable absorber," IEEE J. Quantum Electron. 42, 500-508 (2006).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

G. Li, S. Zhao, K. Yang, and W. Wu, "Pulse width reduction in diode-pumped Nd:GdVO4 laser with AO and GaAs double Q-switches," Jpn. J. Appl. Phys. 44, 3017-3021 (2005).
[CrossRef]

Opt. Commun.

T. T. Kajava and A. L. Gaeta, "Intra-cavity frequency-doubling of a Nd:YAG laser passively Q-switched with GaAs," Opt. Commun. 137, 93-97 (1997).
[CrossRef]

Z. Li, Z. Xiong, N. Moore, G. C. Lim, W. L. Huang, and D. X. Huang, "Pulse width reduction in AO Q-switched diode-pumped Nd:YVO4 laser with GaAs coupler," Opt. Commun. 237, 411-416 (2004).
[CrossRef]

Opt. Eng.

S. Zhao, X. Zhang, J. Zheng, L. Chen, Z. Cheng, and H. Cheng, "Passively Q-switched self-frequency-doubling Nd3+:GdCa4O(BO3)3 laser with GaAs saturable absorber," Opt. Eng. 41, 559-560 (2002).
[CrossRef]

Opt. Express

Opt. Laser Technol.

L. Chen, S. Zhao, and H. Zhao, "Passively Q-switching of a laser-diode-pumped intracavity-frequency-doubling Nd:NYW/KTP laser with GaAs saturable absorber," Opt. Laser Technol. 35, 563-567 (2003).
[CrossRef]

D. Li, S. Zhao, G. Li, and K. Yang, "Optimization of peak power of passively Q-switched lasers by taking into account intracavity laser spatial distribution," Opt. Laser Technol. 39, 13-20 (2007).
[CrossRef]

D. Li, S. Zhao, G. Li, and K. Yang, "Optimization of the slowly actively Q-switched laser," Opt. Laser Technol. 39, 846-851 (2007).
[CrossRef]

Opt. Lett.

Opt. Quantum Electron.

D. Li, S. Zhao, G. Li, and K. Yang, "Optimization of passively Q-switched lasers by taking into account intracavity laser spatial distribution," Opt. Quantum Electron. 37, 927-942 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Dependence of x o p t on z for different Δ a in the case of ω L / ω p = 1 , α = 50 , and τ s = 5 when the laser is an energy-maximized doubly Q-switched laser. a. Δ a = 0 , b. Δ a = 0.1 , c. Δ a = 0.15 , and d. Δ a = 0.2 .

Fig. 2
Fig. 2

Dependence of y o p t on z for different Δ a in the case of ω L / ω p = 1 , α = 7 , and τ s = 5 when the laser is an energy-maximized doubly Q-switched laser. a. Δ a = 0 , b. Δ a = 0.1 , c. Δ a = 0.15 , and d. Δ a = 0.2 .

Fig. 3
Fig. 3

Dependence of e max on z for different Δ a in the case of ω L / ω p = 1 , α = 50 , and τ s = 5 when the laser is an energy-maximized doubly Q-switched laser. a. Δ a = 0 , b. Δ a = 0.1 , c. Δ a = 0.15 , and d. Δ a = 0.2 .

Fig. 4
Fig. 4

Dependence of p o p t on z for different Δ a in the case of ω L / ω p = 1 , α = 50 , and τ s = 5 when the laser is an energy-maximized doubly Q-switched laser. a. Δ a = 0 , b. Δ a = 0.1 , c. Δ a = 0.15 , d. Δ a = 0.2 .

Fig. 5
Fig. 5

Dependence of w on z for different Δ a in the case of ω L / ω p = 1 , α = 50 , and τ s = 5 when the laser is an energy-maximized doubly Q-switched laser. a. Δ a = 0 , b. Δ a = 0.1 , c. Δ a = 0.15 , d. Δ a = 0.2 .

Fig. 6
Fig. 6

Dependence of x o p t on z for different τ s in the case of ω L / ω p = 1 , α = 50 , and Δ a = 0.1 when the laser is an energy-maximized doubly Q-switched laser. a. τ s = 5 , b. τ s = 50 , c. τ s = 80 , d. τ s = 100 .

Fig. 7
Fig. 7

Dependence of e max on z for different τ s in the case of ω L / ω p = 1 , α = 50 , and Δ a = 0.1 when the laser is an energy-maximized doubly Q-switched laser. a. τ s = 5 , b. τ s = 50 , c. τ s = 80 , d. τ s = 100 .

Fig. 8
Fig. 8

Dependence of p o p t on z for different τ s in the case of ω L / ω p = 1 , α = 50 , and Δ a = 0.1 when the laser is an energy-maximized doubly Q-switched laser. a. τ s = 5 , b. τ s = 50 , c. τ s = 80 , d. τ s = 100 .

Fig. 9
Fig. 9

Dependence of w on z for different τ s in the case of ω L / ω p = 1 , α = 50 , and Δ a = 0.1 when the laser is an energy-maximized doubly Q-switched laser. a. τ s = 5 , b. τ s = 50 , c. τ s = 80 , d. τ s = 100 .

Fig. 10
Fig. 10

Dependence of x o p t on z for different α in the case of Δ a = 0.1 , ω L / ω p = 1 , and τ s = 5 when the laser is an energy-maximized doubly Q-switched laser. a. α = 8 , b. α = 10 , c. α = 15 , d. α = 20 , e. α = 50 , f. α = 100 .

Fig. 11
Fig. 11

Dependence of e max on z for different α in the case of Δ a = 0.1 , ω L / ω p = 1 , and τ s = 5 when the laser is an energy-maximized doubly Q-switched laser. a. α = 8 , b. α = 10 , c. α = 15 , d. α = 20 , e. α = 50 , f. α = 100 .

Fig. 12
Fig. 12

Dependence of p o p t on z for different α in the case of Δ a = 0.1 , ω L / ω p = 1 , and τ s = 5 when the laser is an energy-maximized doubly Q-switched laser. a. α = 8 , b. α = 10 , c. α = 15 , d. α = 20 , e. α = 50 , f. α = 100 .

Fig. 13
Fig. 13

Dependence of w on z for different α in the case of Δ a = 0.1 , ω L / ω p = 1 , and τ s = 5 when the laser is an energy-maximized doubly Q-switched laser. a. α = 8 , b. α = 10 , c. α = 15 , d. α = 20 , e. α = 50 , f. α = 100 .

Fig. 14
Fig. 14

Schematic of the experimental setup.

Fig. 15
Fig. 15

Temporal profile of a single pulse with double Q-switching when R = 20 % .

Fig. 16
Fig. 16

Temporal profile of a single pulse with pure AO Q-switching.

Tables (2)

Tables Icon

Table 1 Relevant Parameters of GaAs a

Tables Icon

Table 2 Output Energy of a Doubly Q-Switched Nd:YVO4 Laser with Different Output Couplers

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( r , t ) = ϕ ( 0 , t ) exp ( 2 r 2 ω L 2 ) ,
δ a ( t ) = δ a   exp [ ( t t s ) 2 ] ,
0 d ϕ ( r , t ) d t 2 π r d r = 0 ϕ ( r , t ) t r { 2 σ n ( r , t ) l 2 σ 0 × [ n 0 n + ( r , t ) ] d 2 σ + n + ( r , t ) d ln ( 1 R ) L δ a ( t ) B ϕ ( r , t ) d } × 2 π r d r ,
d n ( r , t ) d t = γ σ c ϕ ( r , t ) n ( r , t ) ,
d n + ( r , t ) d t = { σ 0 [ n 0 n + ( r , t ) ] σ + n + ( r , t ) } × c ϕ ( r , t ) ,
ϕ ( r , 0 ) = 10 4 ϕ m ( r , t ) ,
n + ( r , 0 ) = n 0 + ,
n ( r , 0 ) = n ( 0 , 0 ) exp ( 2 r 2 ω p 2 ) ,
n ( 0 , 0 ) = ln ( 1 R ) + ln ( 1 T 0 2 ) + L + δ a 2 σ l ( 1 + ω L 2 ω p 2 ) .
d ϕ ( 0 , t ) d t = 4 σ n ( 0 , 0 ) l ϕ ( 0 , t ) ω L 2 t r 0 exp [ γ c σ   exp ( 2 r 2 ω L 2 ) × 0 t ϕ ( 0 , t ) d t ] exp [ 2 r 2 ( 1 ω p 2 + 1 ω L 2 ) ] 2 r d r 4 ϕ ( 0 , t ) d ω L 2 t r 0 { 2 δ 1 + δ σ 0 n 0 σ 0 ( 1 δ ) × ( n 0 + n 0 1 + δ ) exp [ c σ 0 ( 1 + δ ) exp ( 2 r 2 ω L 2 ) × 0 t ϕ ( 0 , t ) d t ] } exp ( 2 r 2 ω L 2 ) 2 r d r ϕ ( 0 , t ) t r × [ ln ( 1 R ) + L ] ϕ ( 0 , t ) t r δ a ( t ) B [ ϕ ( 0 , t ) ] 2 2 t r d ,
T 0 = exp { [ σ 0 ( n 0 n 0 + ) + σ + n 0 + ] d } .
x = ln ( 1 R ) 2 β σ n ( 0 , 0 ) l δ a ,
y = ln ( 1 T 0 2 ) 2 β σ n ( 0 , 0 ) l δ a ,
z = L 2 β σ n ( 0 , 0 ) l δ a ,
x + y + z = 1.
d ϕ ( 0 , τ ) d τ = Φ ( 0 , τ ) ( 1 + Δ a ) 0 t exp { A ( τ ) u β } d u χ 1 [ 1 ( x + z ) ] Φ ( 0 , τ ) χ 2 [ 1 ( x + z ) ] × Φ ( 0 , τ ) 1 exp [ α A ( τ ) ] α A ( τ ) ( x + z ) Φ ( 0 , τ ) Φ ( 0 , τ ) Δ a × exp ( τ 2 τ s 2 ) B 8 L χ 3 [ 1 ( x + z ) ] × α [ Φ ( 0 , τ ) ] 2 ,
e = 4 σ γ π ω L 2 h ν 1 2 β σ n ( 0 , 0 ) l δ a E ,
p = 1 ( 2 β σ n ( 0 , 0 ) l δ a ) 2 4 σ γ t r π ω L 2 h ν P m ,
w = 2 β σ n ( 0 , 0 ) l δ a t r W ,
e = x Φ int ,
p = x Φ m ,
w e p ,

Metrics