Abstract

We present the optical feedback characteristics of a single-mode Nd:YAG laser with a wave plate in the external cavity. The laser intensities of the two orthogonal directions, which are both modulated by the change of external cavity length, have a phase difference due to the birefringence effect of the wave plate. When threshold intensity is introduced, a period of intensity fringe can be divided into four equal zones. Each zone corresponds to λ/8 displacement of the external feedback reflector. The direction of displacement can be discriminated by the sequence of these four zones. This phenomenon provides a potential displacement sensor with directional discrimination and high resolution of eighth wavelength compared with the traditional optical feedback.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. P. G. R. King and G. J. Steward, "Metrology with an optical maser," New Sci. 17, 180-182 (1963).
  2. A. Bearden, M. P. O'Neill, L. C. Osborne, and T. L. Wong, "Imaging and vibrational analysis with laser-feedback interferometry," Opt. Lett. 18, 238-240 (1993).
    [CrossRef] [PubMed]
  3. W. M. Wang, W. J. O. Boyle, K. T. V. Grattan, and A. W. Palmer, "Self-mixing interference in a diode laser: experimental observations and theoretical analysis," Appl. Opt. 32, 1551-1558 (1993).
    [CrossRef] [PubMed]
  4. T. Yoshino, M. Nara, S. Mnatzkanian, B. S. Lee, and T. C. Strand, "Laser diode feedback interferometer for stabilization and displacement measurements," Appl. Opt. 26, 892-897 (1987).
    [CrossRef] [PubMed]
  5. G. Giulian, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A , Pure Appl. Opt. 4, S283-S294 (2002).
    [CrossRef]
  6. R. Kawai, Y. Asakawa, and K. Otsuka, "Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diodepumped microchip LiNdP4O12 lasers," IEEE Photon. Technol. Lett. 11, 706-708 (1999).
    [CrossRef]
  7. P. Castellini, G. M. Revel, and E. P. Tomasini, "Laser Doppler vibrometry: a review of advances and applications," Shock Vib. Dig. 30, 443-456 (1998).
    [CrossRef]
  8. G. Giuliani, S. Bozzi-Pietra, and S. Donati, "Self-mixing laser diode vibrometer," Meas. Sci. Technol. 14, 24-32 (2003).
    [CrossRef]
  9. R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. QE-16, 347-355 (1980).
    [CrossRef]
  10. D. Lenstra, V. M. Van, and B. Jaskorzynska, "On the theory of a single-mode laser with weak optical feedback," Physica B & C 125, 255-264 (1984).
    [CrossRef]
  11. P. J. D. Groot, G. M. Gallatin, and S. H. Macomber, "Ranging and velocimetry signal generation in a backscatter-modulated laser diode," Appl. Opt. 27, 4475-4480 (1988).
    [CrossRef] [PubMed]
  12. W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, "Self-mixing interference inside a single-mode diode laser for optical sensing applications," J. Lightwave Technol. 12, 1577-1587 (1994).
    [CrossRef]
  13. R. W. Tkach and A. R. Chraplyvy, "Regimes of feedback effects in 1.5-μm distributed feedback lasers," J. Lightwave Technol. LT-4, 1655-1661 (1986).
    [CrossRef]
  14. L. Fei, S. Zhang, Y. Li, and J. Zhu, "Self-mixing interference effects of orthogonally polarized dual frequency laser," Opt. Express 12, 6100-6105 (2004).
    [CrossRef] [PubMed]
  15. W. Mao, S. Zhang, L. Cui, and Y. Tan, "Self-mixing interference effects with a folding feedback cavity in Zeeman-birefringence dual frequency laser," Opt. Express 14, 182-189 (2006).
    [CrossRef] [PubMed]
  16. S. Zhang, M. Wu, and G. Jin, "Birefringence tuning double frequency He-Ne laser," Appl. Opt. 29, 1265-1267 (1990).
    [CrossRef] [PubMed]
  17. X. Wan, S. Zhang, L. Gang, and L. Fei, "Influence of optical feedback on the longitudinal mode stability of microchip Nd:YAG lasers," Opt. Eng. 44, 104204 (2005).
    [CrossRef]
  18. P. Nerin, P. Puget, P. Besesty, and G. Chartier, "Self-mixing using a dual-polarization Nd:YAG microchip laser," Electron. Lett. 33, 491-492 (1997).
    [CrossRef]
  19. Y. Tan and S. Zhang, "Intensity tuning in single mode microchip Nd:YAG laser with external cavity," Chin. Phys. Lett. 23, 3271-3274 (2006).
    [CrossRef]

2006 (2)

2005 (1)

X. Wan, S. Zhang, L. Gang, and L. Fei, "Influence of optical feedback on the longitudinal mode stability of microchip Nd:YAG lasers," Opt. Eng. 44, 104204 (2005).
[CrossRef]

2004 (1)

2003 (1)

G. Giuliani, S. Bozzi-Pietra, and S. Donati, "Self-mixing laser diode vibrometer," Meas. Sci. Technol. 14, 24-32 (2003).
[CrossRef]

2002 (1)

G. Giulian, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A , Pure Appl. Opt. 4, S283-S294 (2002).
[CrossRef]

1999 (1)

R. Kawai, Y. Asakawa, and K. Otsuka, "Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diodepumped microchip LiNdP4O12 lasers," IEEE Photon. Technol. Lett. 11, 706-708 (1999).
[CrossRef]

1998 (1)

P. Castellini, G. M. Revel, and E. P. Tomasini, "Laser Doppler vibrometry: a review of advances and applications," Shock Vib. Dig. 30, 443-456 (1998).
[CrossRef]

1997 (1)

P. Nerin, P. Puget, P. Besesty, and G. Chartier, "Self-mixing using a dual-polarization Nd:YAG microchip laser," Electron. Lett. 33, 491-492 (1997).
[CrossRef]

1994 (1)

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, "Self-mixing interference inside a single-mode diode laser for optical sensing applications," J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

1993 (2)

1990 (1)

1988 (1)

1987 (1)

1986 (1)

R. W. Tkach and A. R. Chraplyvy, "Regimes of feedback effects in 1.5-μm distributed feedback lasers," J. Lightwave Technol. LT-4, 1655-1661 (1986).
[CrossRef]

1984 (1)

D. Lenstra, V. M. Van, and B. Jaskorzynska, "On the theory of a single-mode laser with weak optical feedback," Physica B & C 125, 255-264 (1984).
[CrossRef]

1980 (1)

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. QE-16, 347-355 (1980).
[CrossRef]

1963 (1)

P. G. R. King and G. J. Steward, "Metrology with an optical maser," New Sci. 17, 180-182 (1963).

Appl. Opt. (4)

Chin. Phys. Lett. (1)

Y. Tan and S. Zhang, "Intensity tuning in single mode microchip Nd:YAG laser with external cavity," Chin. Phys. Lett. 23, 3271-3274 (2006).
[CrossRef]

Electron. Lett. (1)

P. Nerin, P. Puget, P. Besesty, and G. Chartier, "Self-mixing using a dual-polarization Nd:YAG microchip laser," Electron. Lett. 33, 491-492 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Lang and K. Kobayashi, "External optical feedback effects on semiconductor injection laser properties," IEEE J. Quantum Electron. QE-16, 347-355 (1980).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. Kawai, Y. Asakawa, and K. Otsuka, "Ultrahigh-sensitivity self-mixing laser Doppler velocimetry with laser-diodepumped microchip LiNdP4O12 lasers," IEEE Photon. Technol. Lett. 11, 706-708 (1999).
[CrossRef]

J. Lightwave Technol. (2)

W. M. Wang, K. T. V. Grattan, A. W. Palmer, and W. J. O. Boyle, "Self-mixing interference inside a single-mode diode laser for optical sensing applications," J. Lightwave Technol. 12, 1577-1587 (1994).
[CrossRef]

R. W. Tkach and A. R. Chraplyvy, "Regimes of feedback effects in 1.5-μm distributed feedback lasers," J. Lightwave Technol. LT-4, 1655-1661 (1986).
[CrossRef]

J. Opt. A (1)

G. Giulian, M. Norgia, S. Donati, and T. Bosch, "Laser diode self-mixing technique for sensing applications," J. Opt. A , Pure Appl. Opt. 4, S283-S294 (2002).
[CrossRef]

Meas. Sci. Technol. (1)

G. Giuliani, S. Bozzi-Pietra, and S. Donati, "Self-mixing laser diode vibrometer," Meas. Sci. Technol. 14, 24-32 (2003).
[CrossRef]

New Sci. (1)

P. G. R. King and G. J. Steward, "Metrology with an optical maser," New Sci. 17, 180-182 (1963).

Opt. Eng. (1)

X. Wan, S. Zhang, L. Gang, and L. Fei, "Influence of optical feedback on the longitudinal mode stability of microchip Nd:YAG lasers," Opt. Eng. 44, 104204 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Physica B & C (1)

D. Lenstra, V. M. Van, and B. Jaskorzynska, "On the theory of a single-mode laser with weak optical feedback," Physica B & C 125, 255-264 (1984).
[CrossRef]

Shock Vib. Dig. (1)

P. Castellini, G. M. Revel, and E. P. Tomasini, "Laser Doppler vibrometry: a review of advances and applications," Shock Vib. Dig. 30, 443-456 (1998).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. M e x : external feedback mirror; BS: beam splitter; PZT: piezoelectric transducer; WP: wave plate; ATT: variable attenuator; YAG: Nd:YAG crystal; LD: laser diode; CL: collimating and focusing lens; W: Wollaston prism; D 1 , 2 : photoelectric detectors.

Fig. 2
Fig. 2

External cavity with a wave plate.

Fig. 3
Fig. 3

(Color online) Simulation of two in-quadrature sinusoidal intensities of the laser with birefringence external cavity feedback (a) without a threshold intensity; (b) with a threshold intensity.

Fig. 4
Fig. 4

(Color online) In-quadrature sinusoidal intensities of the laser (a) with conventional optical feedback; (b) with birefringence external cavity feedback.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E o = E e = 2 E e x / 2 .
δ = ( l e l o ) 2 π λ = ( n e n o ) d 2 π λ ,
E f ( t ) = r 1 r 2   exp ( j 4 π ν n d c + 2 g d ) E i ( t ) + r 1 T 2 r 3 ξ   exp ( j 4 π ν n d + l c + 2 g d ) E i ( t ) ,
E f X ( t ) = r 1 r 2   exp ( j 4 π ν n d c + 2 g d ) E i X ( t ) + r 1 T 2 r 3 ξ   exp ( j 4 π ν n d + l o c + 2 g d ) E i X ( t ) ,
E f Y ( t ) = r 1 r 2   exp ( j 4 π ν n d c + 2 g d ) E i Y ( t ) + r 1 T 2 r 3 ξ   exp ( j 4 π ν n d + l e c + 2 g d ) E i Y ( t ) .
r 1 r 2   exp ( j 4 π ν n d c + 2 g d ) [ 1 + β   exp ( j 4 π ν l o c ) ] = 1 ,
r 1 r 2   exp ( j 4 π ν n d c + 2 g d ) [ 1 + β   exp ( j 4 π ν l e c ) ] = 1 ,
g X = 1 n d [ ln ( r 1 r 2 ) + β 2   cos   φ ]
g Y = 1 n d [ ln ( r 1 r 2 ) + β 2   cos ( φ + 2 δ ) ] ,
g 0 = 1 n d   ln ( r 1 r 2 ) .
Δ g X = β 2 n d   cos   φ ,
Δ g Y = β 2 n d   cos ( φ + 2 δ ) .
I = I 0 ( 1 K Δ g ) ,
I X = I 0 X [ 1 + β K 2 n d   cos   φ ] ,
I Y = I 0 Y [ 1 + β K 2 n d   cos ( φ + 2 δ ) ] .

Metrics