Abstract

We demonstrate the capabilities of the recently introduced interferometric parallel pulse shaper setup and present a method for fully tailoring the three-dimensional electrical field of femtosecond laser pulses. The possibility of producing parametric polarization pulses with arbitrary orientations and ellipticities in time is demonstrated with a selection of example pulses.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
    [CrossRef]
  2. T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, "Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses," Phys. Rev. Lett. 92, 133005 (2004).
    [CrossRef] [PubMed]
  3. T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, "Quantum control by ultrafast polarization shaping," Phys. Rev. Lett. 92, 208301 (2004).
    [CrossRef] [PubMed]
  4. N. Dudovich, D. Oron, and Y. Silberberg, "Quantum control of the angular momentum distribution in multiphoton absorption processes," Phys. Rev. Lett. 92, 103003 (2004).
    [CrossRef] [PubMed]
  5. T. Brixner, F. J. García de Abajo, J. Schneider, and W. Pfeiffer, "Nanoscopic ultrafast space-time-resolved spectroscopy," Phys. Rev. Lett. 95, 093901 (2005).
    [CrossRef] [PubMed]
  6. F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, "Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules," Chem. Phys. 332, 313-317 (2007).
    [CrossRef]
  7. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, "Adaptive subwavelength control of nano-optical fields," Nature 446, 301-304 (2007).
    [CrossRef] [PubMed]
  8. M. M. Wefers and K. A. Nelson, "Generation of high-fidelity programmable ultrafast optical waveforms," Opt. Lett. 20, 1047-1049 (1995).
    [CrossRef] [PubMed]
  9. T. Brixner and G. Gerber, "Femtosecond polarization pulse shaping," Opt. Lett. 26, 557-559 (2001).
    [CrossRef]
  10. T. Brixner, N. H. Damrauer, G. Krampert, P. Niklaus, and G. Gerber, "Adaptive shaping of femtosecond polarization profiles," J. Opt. Soc. Am. B 20, 878-881 (2003).
    [CrossRef]
  11. M. Akbulut, R. Nelson, A. M. Weiner, P. Cronin, and P. J. Miller, "Broadband polarization correction with programmable liquid-crystal modulator arrays," Opt. Lett. 29, 1129-1131 (2004).
    [CrossRef] [PubMed]
  12. H. Miao, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, "Sensing and compensation of femtosecond waveform distortion induced by all-order polarization mode dispersion at selected polarization states," Opt. Lett. 32, 424-426 (2007).
    [CrossRef] [PubMed]
  13. L. Polachek, D. Oron, and Y. Silberberg, "Full control of the spectral polarization of ultrashort pulses," Opt. Lett. 31, 631-633 (2006).
    [CrossRef] [PubMed]
  14. M. Plewicki, S. M. Weber, F. Weise, and A. Lindinger, "Independent control over the amplitude, phase, and polarization of femtosecond pulses," Appl. Phys. B 86, 259-263 (2007).
    [CrossRef]
  15. M. Plewicki, F. Weise, S. M. Weber, and A. Lindinger, "Phase, amplitude, and polarization shaping with a pulse shaper in a Mach-Zehnder interferometer," Appl. Opt. 45, 8354-8359 (2006).
    [CrossRef] [PubMed]
  16. T. Hornung, R. Meier, and M. Motzkus, "Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain," Chem. Phys. Lett. 326, 445-453 (2000).
    [CrossRef]
  17. S. M. Weber, A. Lindinger, F. Vetter, M. Plewicki, A. Merli, and L. Wöste, "Application of parametric time and frequency domain shaping," Eur. J. Phys. D 33, 39-42 (2005).
    [CrossRef]
  18. T. Brixner, "Poincaré representation of polarization-shaped femtosecond laser pulses," Appl. Phys. B 76, 531-540 (2003).
  19. W. J. Walecki, D. N. Fittinghoff, A. L. Smirl, and R. Trebino, "Characterization of the polarization state of weak ultrashort coherent signals by dual-channel spectral interferometry," Opt. Lett. 22, 81-83 (1997).
    [CrossRef] [PubMed]
  20. G. E. Jellison, Jr. and D. H. Lowndes, "Time-resolved ellipsometry measurements of the optical properties of silicon during pulsed excimer laser irradiation," Appl. Phys. Lett. 47, 718-721 (1985).
    [CrossRef]

2007 (4)

F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, "Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules," Chem. Phys. 332, 313-317 (2007).
[CrossRef]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, "Adaptive subwavelength control of nano-optical fields," Nature 446, 301-304 (2007).
[CrossRef] [PubMed]

H. Miao, A. M. Weiner, C. Langrock, R. V. Roussev, and M. M. Fejer, "Sensing and compensation of femtosecond waveform distortion induced by all-order polarization mode dispersion at selected polarization states," Opt. Lett. 32, 424-426 (2007).
[CrossRef] [PubMed]

M. Plewicki, S. M. Weber, F. Weise, and A. Lindinger, "Independent control over the amplitude, phase, and polarization of femtosecond pulses," Appl. Phys. B 86, 259-263 (2007).
[CrossRef]

2006 (2)

2005 (2)

S. M. Weber, A. Lindinger, F. Vetter, M. Plewicki, A. Merli, and L. Wöste, "Application of parametric time and frequency domain shaping," Eur. J. Phys. D 33, 39-42 (2005).
[CrossRef]

T. Brixner, F. J. García de Abajo, J. Schneider, and W. Pfeiffer, "Nanoscopic ultrafast space-time-resolved spectroscopy," Phys. Rev. Lett. 95, 093901 (2005).
[CrossRef] [PubMed]

2004 (4)

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, "Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses," Phys. Rev. Lett. 92, 133005 (2004).
[CrossRef] [PubMed]

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, "Quantum control by ultrafast polarization shaping," Phys. Rev. Lett. 92, 208301 (2004).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, "Quantum control of the angular momentum distribution in multiphoton absorption processes," Phys. Rev. Lett. 92, 103003 (2004).
[CrossRef] [PubMed]

M. Akbulut, R. Nelson, A. M. Weiner, P. Cronin, and P. J. Miller, "Broadband polarization correction with programmable liquid-crystal modulator arrays," Opt. Lett. 29, 1129-1131 (2004).
[CrossRef] [PubMed]

2003 (2)

T. Brixner, N. H. Damrauer, G. Krampert, P. Niklaus, and G. Gerber, "Adaptive shaping of femtosecond polarization profiles," J. Opt. Soc. Am. B 20, 878-881 (2003).
[CrossRef]

T. Brixner, "Poincaré representation of polarization-shaped femtosecond laser pulses," Appl. Phys. B 76, 531-540 (2003).

2001 (1)

2000 (2)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

T. Hornung, R. Meier, and M. Motzkus, "Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain," Chem. Phys. Lett. 326, 445-453 (2000).
[CrossRef]

1997 (1)

1995 (1)

1985 (1)

G. E. Jellison, Jr. and D. H. Lowndes, "Time-resolved ellipsometry measurements of the optical properties of silicon during pulsed excimer laser irradiation," Appl. Phys. Lett. 47, 718-721 (1985).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

M. Plewicki, S. M. Weber, F. Weise, and A. Lindinger, "Independent control over the amplitude, phase, and polarization of femtosecond pulses," Appl. Phys. B 86, 259-263 (2007).
[CrossRef]

T. Brixner, "Poincaré representation of polarization-shaped femtosecond laser pulses," Appl. Phys. B 76, 531-540 (2003).

Appl. Phys. Lett. (1)

G. E. Jellison, Jr. and D. H. Lowndes, "Time-resolved ellipsometry measurements of the optical properties of silicon during pulsed excimer laser irradiation," Appl. Phys. Lett. 47, 718-721 (1985).
[CrossRef]

Chem. Phys. (1)

F. Weise, S. M. Weber, M. Plewicki, and A. Lindinger, "Application of phase, amplitude, and polarization shaped pulses for optimal control on molecules," Chem. Phys. 332, 313-317 (2007).
[CrossRef]

Chem. Phys. Lett. (1)

T. Hornung, R. Meier, and M. Motzkus, "Optimal control of molecular states in a learning loop with a parameterization in frequency and time domain," Chem. Phys. Lett. 326, 445-453 (2000).
[CrossRef]

Eur. J. Phys. D (1)

S. M. Weber, A. Lindinger, F. Vetter, M. Plewicki, A. Merli, and L. Wöste, "Application of parametric time and frequency domain shaping," Eur. J. Phys. D 33, 39-42 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. Garcia de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, "Adaptive subwavelength control of nano-optical fields," Nature 446, 301-304 (2007).
[CrossRef] [PubMed]

Opt. Lett. (6)

Phys. Rev. Lett. (4)

T. Suzuki, S. Minemoto, T. Kanai, and H. Sakai, "Optimal control of multiphoton ionization processes in aligned I2 molecules with time-dependent polarization pulses," Phys. Rev. Lett. 92, 133005 (2004).
[CrossRef] [PubMed]

T. Brixner, G. Krampert, T. Pfeifer, R. Selle, G. Gerber, M. Wollenhaupt, O. Graefe, C. Horn, D. Liese, and T. Baumert, "Quantum control by ultrafast polarization shaping," Phys. Rev. Lett. 92, 208301 (2004).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, "Quantum control of the angular momentum distribution in multiphoton absorption processes," Phys. Rev. Lett. 92, 103003 (2004).
[CrossRef] [PubMed]

T. Brixner, F. J. García de Abajo, J. Schneider, and W. Pfeiffer, "Nanoscopic ultrafast space-time-resolved spectroscopy," Phys. Rev. Lett. 95, 093901 (2005).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71, 1929-1960 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(Color online) Interferometric, parallel shaper setup to fully control phase, amplitude, and polarization. The inset labels the ellipse parameters that we used.

Fig. 2
Fig. 2

(Color online) Experimental parametric test pulses produced by the parallel setup: (a) orthogonal 0° and 90° linearly polarized double pulse, (b) linearly∕circularly polarized double pulse, (c) elliptical (ellipticity of 0.3, 30° major axis angle) and linear (major axis angle of 90°) pulse form. The dashed and dotted curves represent ellipticity H b a and the major axis angle β / 2 from Fig. 1, respectively. (d)–(f) Three-dimensional representations of the electrical field amplitudes of the corresponding pulses (having the same time scale and arbitrary colors). The shadows are the field projections to the respective planes.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε = φ y φ x = ± arctan tan [ 2 arctan H b a ] sin β ,
χ = 1 / 2 arccos [ cos β cos ( 2 arctan H b a ) ]
E out ( ω ) = E ˜ in ( ω ) N ( a N e i ϕ N , x ( ω ) b N e i ϕ N , y ( ω ) ) H ( ω ) ,
| E ˜ x , y ( ω ) | 2 d ω = T x , y ( ω ) | E ˜ in ( ω ) | 2 d ω

Metrics