Abstract

The concept of exploiting both the scattering properties and the absence of solar radiation in the “solar blind ultraviolet” spectral range for achieving a non-line-of-sight (NLOS) communication link for wireless sensor networks has been discussed in scientific literature. We address the issue of the multiaccess interference (MAI) that would be encountered in a simple and low-cost sensor network operating on the above NLOS principle, for different sensor node densities and traffic levels, and use a Poisson model for the sensor node distribution. A metric for evaluation and comparison of sensor node distribution scenarios is derived and used to discuss the performance limitations of NLOS wireless sensor networks operating in the solar blind ultraviolet spectrum. Guidelines for NLOS wireless sensor network design are outlined taking into consideration the cumulative effect of interference from distant sensor nodes, the expected number of hops, and the trade-off between node redundancy and node isolation. The significant contribution of network traffic control to system operability is demonstrated.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. C.-Y. Chong and S. P. Kumar, "Sensor networks: evolution, opportunities, and challenges," Proc. IEEE 91, 1247-1256 (2003).
    [CrossRef]
  2. B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister, "Smart dust: communicating with a cubic-millimeter computer," IEEE Comput. 34, 44-51 (2001).
    [CrossRef]
  3. D. Estrin, D. Culler, K. Pister, and G. Sukhatme, "Connecting the physical world with pervasive networks," IEEE Pervasive Comput . 1, 59-69 (2002).
    [CrossRef]
  4. D. M. Reilly, D. T. Moriarty, and J. A. Maynard, "Unique properties of solar blind ultraviolet communication systems for unattended ground sensor network," in Unmanned/Unattended Sensors and Sensor Networks, E. M. Carapezza, ed., Proc. SPIE 5611, 244-254 (2004).
    [CrossRef]
  5. G. A. Shaw, A. M. Siegel, and J. Model, "Ultraviolet comm links for distributed sensor systems," IEEE LEOS Newsletter (October, 2005), pp. 26-29.
  6. D. Kedar and S. Arnon, "Non-line-of-sight optical wireless sensor network operating in multi-scattering channels," Appl. Opt. 45, 8454-8461 (2006).
    [CrossRef] [PubMed]
  7. D. Kedar and S. Arnon, "An ultraviolet optical wireless sensor network in multiscattering channels," in Fifth International Workshop on Information Optics (American Institute of Physics, 2006).
  8. D. Kedar and S. Arnon, "Backscattering-induced crosstalk in WDM optical wireless communication," J. Lightwave Technol. 23, 2023-2030 (2005).
    [CrossRef]
  9. D. Kedar and S. Arnon, "Optical wireless communication through fog in the presence of pointing errors," Appl. Opt. 42, 1987-1993 (2003).
    [CrossRef]
  10. R. Cardell-Oliver, K. Smettem, M. Kranz, and K. Mayer, "A reactive soil moisture sensor network: design and field evaluation," Intl. J. Distrib. Sensor Netw. 1, 149-162 (2005).
    [CrossRef]
  11. A. Savvides, H. Park, and M. B. Strivastava, "The n-hop multilateration primitive for node localization problems," Mobile Netw. Appl. 8, 443-451 (2003).
    [CrossRef]
  12. E. N. Gilbert, "Random plane networks," J. Soc. Indust. Appl. Math. 9, 533-543 (1964).
    [CrossRef]
  13. R. E. Miles, "Random polygons determined by random lines in a plane," Mathematics 52, 901-907 (1964).
  14. Y. Sung, L. Tong, and A. Swami, "Asymptotic locally optimal detector for large-scale sensor networks under the Poisson regime," IEEE Trans. Signal Process. 53, 2005-2017 (2005).
    [CrossRef]

2006 (1)

2005 (3)

D. Kedar and S. Arnon, "Backscattering-induced crosstalk in WDM optical wireless communication," J. Lightwave Technol. 23, 2023-2030 (2005).
[CrossRef]

Y. Sung, L. Tong, and A. Swami, "Asymptotic locally optimal detector for large-scale sensor networks under the Poisson regime," IEEE Trans. Signal Process. 53, 2005-2017 (2005).
[CrossRef]

R. Cardell-Oliver, K. Smettem, M. Kranz, and K. Mayer, "A reactive soil moisture sensor network: design and field evaluation," Intl. J. Distrib. Sensor Netw. 1, 149-162 (2005).
[CrossRef]

2004 (1)

D. M. Reilly, D. T. Moriarty, and J. A. Maynard, "Unique properties of solar blind ultraviolet communication systems for unattended ground sensor network," in Unmanned/Unattended Sensors and Sensor Networks, E. M. Carapezza, ed., Proc. SPIE 5611, 244-254 (2004).
[CrossRef]

2003 (3)

C.-Y. Chong and S. P. Kumar, "Sensor networks: evolution, opportunities, and challenges," Proc. IEEE 91, 1247-1256 (2003).
[CrossRef]

A. Savvides, H. Park, and M. B. Strivastava, "The n-hop multilateration primitive for node localization problems," Mobile Netw. Appl. 8, 443-451 (2003).
[CrossRef]

D. Kedar and S. Arnon, "Optical wireless communication through fog in the presence of pointing errors," Appl. Opt. 42, 1987-1993 (2003).
[CrossRef]

2002 (1)

D. Estrin, D. Culler, K. Pister, and G. Sukhatme, "Connecting the physical world with pervasive networks," IEEE Pervasive Comput . 1, 59-69 (2002).
[CrossRef]

2001 (1)

B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister, "Smart dust: communicating with a cubic-millimeter computer," IEEE Comput. 34, 44-51 (2001).
[CrossRef]

1964 (2)

E. N. Gilbert, "Random plane networks," J. Soc. Indust. Appl. Math. 9, 533-543 (1964).
[CrossRef]

R. E. Miles, "Random polygons determined by random lines in a plane," Mathematics 52, 901-907 (1964).

Appl. Opt. (2)

IEEE Comput. (1)

B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister, "Smart dust: communicating with a cubic-millimeter computer," IEEE Comput. 34, 44-51 (2001).
[CrossRef]

IEEE LEOS Newsletter (1)

G. A. Shaw, A. M. Siegel, and J. Model, "Ultraviolet comm links for distributed sensor systems," IEEE LEOS Newsletter (October, 2005), pp. 26-29.

IEEE Pervasive Comput (1)

D. Estrin, D. Culler, K. Pister, and G. Sukhatme, "Connecting the physical world with pervasive networks," IEEE Pervasive Comput . 1, 59-69 (2002).
[CrossRef]

IEEE Trans. Signal Process. (1)

Y. Sung, L. Tong, and A. Swami, "Asymptotic locally optimal detector for large-scale sensor networks under the Poisson regime," IEEE Trans. Signal Process. 53, 2005-2017 (2005).
[CrossRef]

Intl. J. Distrib. Sensor Netw. (1)

R. Cardell-Oliver, K. Smettem, M. Kranz, and K. Mayer, "A reactive soil moisture sensor network: design and field evaluation," Intl. J. Distrib. Sensor Netw. 1, 149-162 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Soc. Indust. Appl. Math. (1)

E. N. Gilbert, "Random plane networks," J. Soc. Indust. Appl. Math. 9, 533-543 (1964).
[CrossRef]

Mathematics (1)

R. E. Miles, "Random polygons determined by random lines in a plane," Mathematics 52, 901-907 (1964).

Mobile Netw. Appl. (1)

A. Savvides, H. Park, and M. B. Strivastava, "The n-hop multilateration primitive for node localization problems," Mobile Netw. Appl. 8, 443-451 (2003).
[CrossRef]

Proc. IEEE (1)

C.-Y. Chong and S. P. Kumar, "Sensor networks: evolution, opportunities, and challenges," Proc. IEEE 91, 1247-1256 (2003).
[CrossRef]

Proc. SPIE (1)

D. M. Reilly, D. T. Moriarty, and J. A. Maynard, "Unique properties of solar blind ultraviolet communication systems for unattended ground sensor network," in Unmanned/Unattended Sensors and Sensor Networks, E. M. Carapezza, ed., Proc. SPIE 5611, 244-254 (2004).
[CrossRef]

Other (1)

D. Kedar and S. Arnon, "An ultraviolet optical wireless sensor network in multiscattering channels," in Fifth International Workshop on Information Optics (American Institute of Physics, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Wireless sensor networks for various applications, showing (enlarged) a cluster of sensor nodes.

Fig. 2
Fig. 2

Signal-to-interference ratio as a function of number of annuli in interference calculation for two propagation models; E 1 = 1 .

Fig. 3
Fig. 3

Signal-to-interference ratio as a function of number of annuli in interference calculation for four values of average number of sensor nodes within communication range.

Fig. 4
Fig. 4

Signal-to-interference ratio floor and probability of communication [ 1 p r o b a b l i t y (no node within communication range)] as a function of average number of sensor nodes within communication range.

Fig. 5
Fig. 5

Signal-to-interference ratio as a function of number of annuli in interference calculation for four traffic levels; E 1 = 1 .

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

E 1 = π R 2 D ,
p k = E 1 k e E 1 k ! .
s = y + I 1 ,
y = S i b ( i ) ,
I 1 = S k = 2 p k l = 1 k 1 l ( 1 2 k 1 ) ( k 1 l ) ,
I 1 = S k = 2 e 1 k ! l = 1 k 1 l ( 1 2 k 1 ) ( k 1 l ) .
E 2 = 3 π R 2 D = 3 E 1 = 3 ,
I 2 = μ 2 S k = 1 3 k e 3 k ! l = 1 k l ( 1 2 k ) ( k l ) .
I T o t = I 1 + S j = 2 μ j k = 1 ( 2 j 1 ) k e ( 2 j 1 ) k ! l = 1 k l ( 1 2 k ) ( k l ) ,
I T o t I 1 + I 2 + + I m + S j = m + 1 ( 2 j 1 ) j k = 1 k 2 ı = 1 m I ı + 2 S k = 1 k 2 .
μ j = C e ( j 1 ) / 2 .
SIR = 20 log ( S I T o t ) .

Metrics