Abstract

Ablation of indium oxide doped with tin oxide (ITO) from glass substrates is described. Laser pulse energy and focus spot size were varied in single-pulse, single-spot ablation tests and for ablation of linear features with scanned multiple pulses. The single-pulse ablation threshold of ITO was smaller than that of the glass substrate so the entire thickness of ITO could be removed in a single pulse or with overlying multiple pulses without the possibility of substrate ablation. Linear features could be created at much higher scanning speeds using a high repetition frequency (100  kHz) Yb fiber amplified laser as compared to a lower repetition frequency (2  kHz) laser. An analysis showed that incubation effects lowered ITO ablation thresholds when pulse frequency was high relative to scanning speed, contributing to large feasible scanning speeds for high pulse frequency lasers.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. B. J. Luff, J. S. Wilkinson, and G. Perrone, "Indium tin oxide overlayered waveguides for sensor applications," Appl. Opt. 36, 7066-7072 (1997).
    [CrossRef]
  2. R. Bel Hadj Tahar, T. Ban, Y. Ohya, and Y. Takahashi, "Tin doped indium oxide thin films: electrical properties," J. Appl. Phys. 83, 2631-2645 (1998).
    [CrossRef]
  3. O. Yavas and M. Takai, "Effect of substrate absorption on the efficiency of laser patterning of indium tin oxide thin films," J. Appl. Phys. 85, 4207-4212 (1999).
    [CrossRef]
  4. Y. H. Tak, C. N. Kim, M. S. Kim, K. B. Kim, M. H. Lee, and S. T. Kim, "Novel patterning method using Nd:YAG and Nd:YVO4 lasers for organic light emitting diodes," Synth. Met. 138, 497-500 (2003).
    [CrossRef]
  5. C. Molpeceres, S. Lauzurica, J. L. Ocana, J. J. Gandia, L. Urbina, and J. Carabe, "Microprocessing of ITO and a-Si thin films using ns laser sources," J. Micromech. Microeng. 15, 1271-1278 (2005).
    [CrossRef]
  6. M. Giridhar, K. Seong, A. Schulzgen, P. Khulbe, N. Peyghambarian, and M. Mansuripur, "Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices," Appl. Opt. 43, 4584-4589 (2004).
    [CrossRef] [PubMed]
  7. C. H. Fan and J. P. Longtin, "Modeling optical breakdown in dielectrics during ultrafast laser processing," Appl. Opt. 40, 3124-3131 (2001).
    [CrossRef]
  8. M. Elbandrawy and M. Gupta, "Optical characteristics of femtosecond laser micromachined periodic structures in Si ‹100›," Appl. Opt. 45, 7137-7143 (2006).
    [CrossRef] [PubMed]
  9. R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, "Coulomb explosion in ultrashort pulsed laser ablation of Al2O3," Phys. Rev. B 62, 13167-13173 (2000).
    [CrossRef]
  10. J. Krüger and W. Kautek, "Ultrashort pulse laser interaction with dielectrics and polymers," Adv. Polym. Sci. 168, 247-289 (2004).
  11. D. Ashkenasi, G. Muller, A. Rosenfeld, R. Stoian, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, "Fundamentals and advantages of ultrafast micro-structuring of transparent materials," Appl. Phys. A 77, 223-228 (2003).
  12. A. Ben-Yakar and R. L. Byer, "Femtosecond laser ablation properties of borosilicate glass," J. Appl. Phys. 96, 5316-5323 (2004).
    [CrossRef]
  13. D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, "Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation," Appl. Surf. Sci. 150, 101-106 (1999).
    [CrossRef]
  14. J. R. Buckley, F. W. Wise, F. O. Ilday, and T. Sosnowski, "Femtosecond fiber lasers with pulse energies above 10 nJ," Opt. Lett. 30, 1888-1890 (2005).
    [CrossRef] [PubMed]
  15. L. Shah, Z. L. Liu, I. Hartl, G. Imeshev, G. C. Cho, and M. E. Fermann, "High energy femtosecond Yb cubicon fiber amplifier," Opt. Express 13, 4717-4722 (2005).
    [CrossRef] [PubMed]
  16. B. Fisette and M. Meunier, "Three-dimensional microfabrication inside photosensitive glasses by femtosecond laser," Laser Micro/Nanoeng. 1, 7-11 (2006).
    [CrossRef]
  17. B. Salle, O. Gobert, P. Meynadier, M. Perdrix, G. Petite, and A. Semerok, "Femtosecond and picosecond laser microablation: ablation efficiency and laser microplasma expansion," Appl. Phys. A 69, S381-S383 (1999).
    [CrossRef]
  18. S. M. Klimentov, T. V. Kononenko, P. A. Pivovarov, S. V. Garnov, V. I. Konov, A. M. Prokhorov, D. Breitling, and F. Dausinger, "The role of plasma in ablation of materials by ultrashort laser pulses," Quantum Electron. 31, 378-382 (2001).
    [CrossRef]

2006 (2)

B. Fisette and M. Meunier, "Three-dimensional microfabrication inside photosensitive glasses by femtosecond laser," Laser Micro/Nanoeng. 1, 7-11 (2006).
[CrossRef]

M. Elbandrawy and M. Gupta, "Optical characteristics of femtosecond laser micromachined periodic structures in Si ‹100›," Appl. Opt. 45, 7137-7143 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (3)

J. Krüger and W. Kautek, "Ultrashort pulse laser interaction with dielectrics and polymers," Adv. Polym. Sci. 168, 247-289 (2004).

A. Ben-Yakar and R. L. Byer, "Femtosecond laser ablation properties of borosilicate glass," J. Appl. Phys. 96, 5316-5323 (2004).
[CrossRef]

M. Giridhar, K. Seong, A. Schulzgen, P. Khulbe, N. Peyghambarian, and M. Mansuripur, "Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices," Appl. Opt. 43, 4584-4589 (2004).
[CrossRef] [PubMed]

2003 (2)

D. Ashkenasi, G. Muller, A. Rosenfeld, R. Stoian, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, "Fundamentals and advantages of ultrafast micro-structuring of transparent materials," Appl. Phys. A 77, 223-228 (2003).

Y. H. Tak, C. N. Kim, M. S. Kim, K. B. Kim, M. H. Lee, and S. T. Kim, "Novel patterning method using Nd:YAG and Nd:YVO4 lasers for organic light emitting diodes," Synth. Met. 138, 497-500 (2003).
[CrossRef]

2001 (2)

C. H. Fan and J. P. Longtin, "Modeling optical breakdown in dielectrics during ultrafast laser processing," Appl. Opt. 40, 3124-3131 (2001).
[CrossRef]

S. M. Klimentov, T. V. Kononenko, P. A. Pivovarov, S. V. Garnov, V. I. Konov, A. M. Prokhorov, D. Breitling, and F. Dausinger, "The role of plasma in ablation of materials by ultrashort laser pulses," Quantum Electron. 31, 378-382 (2001).
[CrossRef]

2000 (1)

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, "Coulomb explosion in ultrashort pulsed laser ablation of Al2O3," Phys. Rev. B 62, 13167-13173 (2000).
[CrossRef]

1999 (3)

O. Yavas and M. Takai, "Effect of substrate absorption on the efficiency of laser patterning of indium tin oxide thin films," J. Appl. Phys. 85, 4207-4212 (1999).
[CrossRef]

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, "Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation," Appl. Surf. Sci. 150, 101-106 (1999).
[CrossRef]

B. Salle, O. Gobert, P. Meynadier, M. Perdrix, G. Petite, and A. Semerok, "Femtosecond and picosecond laser microablation: ablation efficiency and laser microplasma expansion," Appl. Phys. A 69, S381-S383 (1999).
[CrossRef]

1998 (1)

R. Bel Hadj Tahar, T. Ban, Y. Ohya, and Y. Takahashi, "Tin doped indium oxide thin films: electrical properties," J. Appl. Phys. 83, 2631-2645 (1998).
[CrossRef]

1997 (1)

Adv. Polym. Sci. (1)

J. Krüger and W. Kautek, "Ultrashort pulse laser interaction with dielectrics and polymers," Adv. Polym. Sci. 168, 247-289 (2004).

Appl. Opt. (4)

Appl. Phys. A (2)

B. Salle, O. Gobert, P. Meynadier, M. Perdrix, G. Petite, and A. Semerok, "Femtosecond and picosecond laser microablation: ablation efficiency and laser microplasma expansion," Appl. Phys. A 69, S381-S383 (1999).
[CrossRef]

D. Ashkenasi, G. Muller, A. Rosenfeld, R. Stoian, I. V. Hertel, N. M. Bulgakova, and E. E. B. Campbell, "Fundamentals and advantages of ultrafast micro-structuring of transparent materials," Appl. Phys. A 77, 223-228 (2003).

Appl. Surf. Sci. (1)

D. Ashkenasi, M. Lorenz, R. Stoian, and A. Rosenfeld, "Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation," Appl. Surf. Sci. 150, 101-106 (1999).
[CrossRef]

J. Appl. Phys. (3)

A. Ben-Yakar and R. L. Byer, "Femtosecond laser ablation properties of borosilicate glass," J. Appl. Phys. 96, 5316-5323 (2004).
[CrossRef]

R. Bel Hadj Tahar, T. Ban, Y. Ohya, and Y. Takahashi, "Tin doped indium oxide thin films: electrical properties," J. Appl. Phys. 83, 2631-2645 (1998).
[CrossRef]

O. Yavas and M. Takai, "Effect of substrate absorption on the efficiency of laser patterning of indium tin oxide thin films," J. Appl. Phys. 85, 4207-4212 (1999).
[CrossRef]

J. Micromech. Microeng. (1)

C. Molpeceres, S. Lauzurica, J. L. Ocana, J. J. Gandia, L. Urbina, and J. Carabe, "Microprocessing of ITO and a-Si thin films using ns laser sources," J. Micromech. Microeng. 15, 1271-1278 (2005).
[CrossRef]

Laser Micro/Nanoeng. (1)

B. Fisette and M. Meunier, "Three-dimensional microfabrication inside photosensitive glasses by femtosecond laser," Laser Micro/Nanoeng. 1, 7-11 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, "Coulomb explosion in ultrashort pulsed laser ablation of Al2O3," Phys. Rev. B 62, 13167-13173 (2000).
[CrossRef]

Quantum Electron. (1)

S. M. Klimentov, T. V. Kononenko, P. A. Pivovarov, S. V. Garnov, V. I. Konov, A. M. Prokhorov, D. Breitling, and F. Dausinger, "The role of plasma in ablation of materials by ultrashort laser pulses," Quantum Electron. 31, 378-382 (2001).
[CrossRef]

Synth. Met. (1)

Y. H. Tak, C. N. Kim, M. S. Kim, K. B. Kim, M. H. Lee, and S. T. Kim, "Novel patterning method using Nd:YAG and Nd:YVO4 lasers for organic light emitting diodes," Synth. Met. 138, 497-500 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Geometry of overlapping ablation spots showing calculation of the theoretical ablation line.

Fig. 2
Fig. 2

Single-pulse ITO ablation energy-diameter curves produced using different focusing optics with fitted logarithmic curves.

Fig. 3
Fig. 3

ITO-squared ablation diameter versus fluence for 0.25 NA optic showing curve fit parameters that correspond to F t h = 0.7 J / cm 2 .

Fig. 4
Fig. 4

Ablation depth of ITO using different focus optics.

Fig. 5
Fig. 5

Surface profile of laser ablation of ITO ( 2   kHz , 0 .1   NA lens, peak fluence F 0 = 2.5 J / cm 2 ; scanning speed s = 20 mm / s ).

Fig. 6
Fig. 6

Single-pulse ablation threshold calculation of glass substrate material showing an ablation threshold of 2.0 J / cm 2 , well above the ITO ablation threshold of 0.7 J / cm 2 .

Fig. 7
Fig. 7

Multipulse ablation by 2 kHz laser with 0.25   NA lens ( F = 0.5 J / cm 2 , s = 1.55 mm / s ).

Fig. 8
Fig. 8

Laser results of 100   kHz for focus spot diameter d 0 = 3.6   μm , scanning speed s = 100 mm / s (top) and 200 mm / s (bottom) and varying E p showing minimum pulse energy for electrical separation: 80   nJ (top), 250   nJ (bottom).

Fig. 9
Fig. 9

Ablation linewidth versus fluence for f = 100   kHz , s = 50 mm / s , d 0 = 3.6   μm . The data closely follow the expected logarithmic trend.

Fig. 10
Fig. 10

Variation of line ablation threshold with pulse overlap at various laser focus spot diameters showing decrease in threshold at high overlap due to incubation.

Fig. 11
Fig. 11

Geometry of overlapping ablation spots showing calculation of theoretical ablation line ripple as a function of ablation spot diameter and processing parameters.

Fig. 12
Fig. 12

Scan speed versus pulse repetition frequency predicted from the results for pulse repetition frequency f = 100   kHz , E p = 100   nJ , and d 0 = 3.6   μm for ablated spot overlap of 94% and 67%.

Fig. 13
Fig. 13

Predicted and experimental ablation width versus scanning speed for d 0 = 6.3   μm and E p = 185   nJ showing the effect of lower ablation threshold at the lower speeds. The experimental point at 0 .025   m / s has a pulse overlap of 96% and an ablation threshold of 0.34 J / cm 2 , and the one at 0.075 m / s has an overlap of 88% and an ablation threshold of 0.44 J / cm 2 .

Tables (1)

Tables Icon

Table 1 Single-Pulse Ablation Thresholds and Incubation Factors for Lines Ablated with Different Focus Spot Sizes

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

F t h = F 0 exp ( 2 r 2 / w 0 2 ) ,
F 0 = 2 E p / π w 0 2 .
F t h = 2 E t h / π w 0 2 ,
D 2 = 2 w 0 2 ln ( F 0 / F t h ) = 2 w 0 2 [ ln ( F 0 ) ln ( F t h ) ] .
D 2 = 2 w 0 2 ln ( E 0 / E t h ) .
F t h ( N ) = F t h ( 1 ) N ξ 1 ,
O d = ( 1 s d f ) ,
D 2 = 2 w 0 2 ln ( F 0 / F t h ) = 6.48 ln ( F 0 / 0.35 ) .
N = d s / f = 1 1 O d .
1 ( 1 Δ ) 2 = s / D f .
s = [ d ( 1 O d ) ] f .
s = [ D ( 1 O D ) ] f ,

Metrics