Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Determination of optical probe interrogation field of near-infrared reflectance: phantom and Monte Carlo study

Not Accessible

Your library or personal account may give you access

Abstract

An optical probe used to localize human brain tissues in vivo has been reported previously. It was able to sense the underlying tissue structure with an optical interrogation field, termed as “look ahead distance” (LAD). A new side-firing probe has been designed with its optical window along its side. We have defined the optical interrogation field of the new side probe as “look aside distance” (LASD). The purpose of this study is to understand the dependence of the LAD and LASD on the optical properties of tissue, the light source intensity, and the integration time of the detector, using experimental and computational methods. The results show that a decrease in light intensity does decrease the LAD and LASD and that an increase in integration time of detection may not necessarily improve the depths of LAD and LASD. Furthermore, Monte Carlo simulation results suggest that the LAD∕LASD decreases with an increase in reduced scattering coefficient to a point, after which the LAD∕LASD remains constant. We expect that an optical interrogation field of a tip or side probe is approximately 1–2 mm in white matter and 2–3.5 mm in gray matter. These conclusions will help us optimally manipulate the parameter settings during surgery and determine the spatial resolution of the probe.

© 2007 Optical Society of America

Full Article  |  PDF Article
More Like This
“Look-Ahead Distance” of a fiber probe used to assist neurosurgery: Phantom and Monte Carlo study

Zhiyu Qian, Sundar S. Victor, Yueqing Gu, Cole A. Giller, and Hanli Liu
Opt. Express 11(16) 1844-1855 (2003)

Optical dosimetry probes to validate Monte Carlo and empirical-method-based NIR dose planning in the brain

Akshay Prabhu Verleker, Michael Shaffer, Qianqian Fang, Mi-Ran Choi, Susan Clare, and Keith M. Stantz
Appl. Opt. 55(34) 9875-9888 (2016)

Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models

Yuich Fukui, Yusaku Ajichi, and Eiji Okada
Appl. Opt. 42(16) 2881-2887 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved