Abstract

We have measured the autofluorescence from suspensions of Pseudomonas aeruginosa in the growth medium and after one, two, and three washes. The bacterium was grown in two different media, nutrient broth and King's B broth. The bacterium was harvested after 12, 24, and 48 h of growth. The fluorescence was measured with excitation every 10  nm from 200   nm to 600   nm. The fluorescence profiles were analyzed using principal component analysis. We found that most of the information is in the first three principal components. Stark differences in the value of the first principal component were noted between the samples in broth and those with one, two, or three washings. The second and third principal components noted differences between the samples washed once and those washed two or three times. There was no significant difference between samples washed two and three times. There are small differences noted between the samples grown in the two different broths, and no differences were noted among the samples harvested at different times.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Coburn, F. E. Lytle, and D. M. Huber, "Identification of bacterial pathogens by laser excited fluorescence," Anal. Chem. 57, 1669-1673 (1985).
    [CrossRef]
  2. T. M. Rossi and I. M. Warner, "Bacterial identification using fluorescence spectroscopy," in Rapid Detection and Identification of Microorganisms, W. H. Nelson, ed. (Verlag Chemie, 1985), pp. 1-50.
  3. L. Reinisch, J. Tribble, J. A. Werkhaven, and R. H. Ossoff, "Non-invasive optical diagnosis of bacteria causing otitis media," Laryngoscope 104, 264-268 (1994).
    [PubMed]
  4. M. J. Sorrel, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, "Bacteria identification of otitis media with fluorescence spectroscopy," Lasers Surg. Med. 14, 155-163 (1994).
    [CrossRef]
  5. B. C. Spector, L. Reinisch, D. Smith, and J. A. Werkhaven, "Noninvasive fluorescent identification of bacteria causing acute otitis media in a chinchilla model," Laryngoscope 110, 1119-1123 (2000).
    [CrossRef] [PubMed]
  6. B. V. Bronk and L. Reinisch, "Variability of steady state bacterial fluorescence with respect to growth conditions," Appl. Spectrosc. 47, 436-440 (1993).
    [CrossRef]
  7. S. Elliott, J. R. Lead, and A. Baker, "Characterization of the fluorescence from freshwater, planktonic bacteria," Water Res. 40, 2075-2083 (2006).
    [CrossRef] [PubMed]
  8. S. Elliott, J. R. Lead, and A. Baker, "Thermal quenching of fluorescence of freshwater, planktonic bacteria," Anal. Chim. Acta 564, 219-225 (2006).
    [CrossRef]
  9. C. B. Smith, J. E. Anderson, and S. R. Webb, "Detection of Bacillus endospores using total luminescence spectroscopy," Spectrochim. Acta Part A 60, 2517-2521 (2004).
    [CrossRef]
  10. J. Ho, "Future of biological aerosol detection," Anal. Chim. Acta 457, 125-148 (2002).
    [CrossRef]
  11. L. M. Brosseau, D. Vesley, N. Rice, J., Goodell, M. Nellis, and P. Hairston, "Differences in detected fluorescence among several bacterial species measured with a direct-reading particle sizer and fluorescence detector," Aerosol Sci. Technol. 32, 545-558 (2000).
    [CrossRef]
  12. D. H. Bergey and J. G. Holt, "Bergey's Manual of Determinative Bacteriology, 9th ed., J.G.Holt (Williams and Wilkins Europe, Ltd., 1994).
  13. A. Balows, The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, and Applications, A. Balows, H. Truper, M. Dworkin, M. Harder, and K.Schleifer, eds. (Springer-Verlag, 1992).
  14. R. A. Dalterio, W. H. Nelson, D. Britt, J. F. Tanguay, and S. L. Suib, "Steady state and decay characteristic of protein tryptophan fluorescence from live bacteria," Appl. Spectrosc. 40, 86-90 (1986).
    [CrossRef]
  15. R. A. Dalterio, W. H. Nelson, D. Britt, J. F. Sperry, J. F. Tanguay, and S. L. Suib, "The steady state and decay characteristics of primary from live bacteria," Appl. Spectrosc. 41, 234-241 (1987).
    [CrossRef]
  16. I. Munro, I. Pecht, and L. Stryer, "Sub nanosecond motions of tryptophan residues in proteins," Proc. Natl Acad. Sci. USA 76, 56-60 (1979).
    [CrossRef] [PubMed]
  17. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum Press, 1983).
  18. J. Kunnil, S. Sarasanandarajah, E. Chacko, and L. Reinisch, "Effect of washing on identification of Bacillus spores by principal-component analysis of fluorescence data," Appl. Opt. 45, 3659-3664 (2006).
    [CrossRef] [PubMed]
  19. H. E. Giana, L. Silveira, R. A. Zangaro, and M. T. T. Pacheco, "Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis," J. Fluoresc. 13, 489-493 (2003).
  20. M. Seaver, D. C. Roselle, J. F. Pinto, and J. D. Eversole, "Absolute emission spectra from Bacillus subtilis and Escherichia coli vegetative cells in solution," Appl. Opt. 37, 5344-5347 (1998).
    [CrossRef]
  21. I. T.Jollifee, Principal Component Analysis (Springer-Verlag, 1986).
  22. D. C. Shelly, J. M. Quarles, and I. M. Warner, "Identification of fluorescent Pseudomonas species," Clin. Chem. 26, 1127-1132 (1980).
    [PubMed]
  23. D. C. Shelly, I. M. Warner, and J. M Quarles, "A multiparameter approach to the fingerprinting of fluorescent Pseudomonads," Clin. Chem. 26, 1419-1424 (1980).
    [PubMed]

2006 (3)

S. Elliott, J. R. Lead, and A. Baker, "Characterization of the fluorescence from freshwater, planktonic bacteria," Water Res. 40, 2075-2083 (2006).
[CrossRef] [PubMed]

S. Elliott, J. R. Lead, and A. Baker, "Thermal quenching of fluorescence of freshwater, planktonic bacteria," Anal. Chim. Acta 564, 219-225 (2006).
[CrossRef]

J. Kunnil, S. Sarasanandarajah, E. Chacko, and L. Reinisch, "Effect of washing on identification of Bacillus spores by principal-component analysis of fluorescence data," Appl. Opt. 45, 3659-3664 (2006).
[CrossRef] [PubMed]

2004 (1)

C. B. Smith, J. E. Anderson, and S. R. Webb, "Detection of Bacillus endospores using total luminescence spectroscopy," Spectrochim. Acta Part A 60, 2517-2521 (2004).
[CrossRef]

2003 (1)

H. E. Giana, L. Silveira, R. A. Zangaro, and M. T. T. Pacheco, "Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis," J. Fluoresc. 13, 489-493 (2003).

2002 (1)

J. Ho, "Future of biological aerosol detection," Anal. Chim. Acta 457, 125-148 (2002).
[CrossRef]

2000 (2)

L. M. Brosseau, D. Vesley, N. Rice, J., Goodell, M. Nellis, and P. Hairston, "Differences in detected fluorescence among several bacterial species measured with a direct-reading particle sizer and fluorescence detector," Aerosol Sci. Technol. 32, 545-558 (2000).
[CrossRef]

B. C. Spector, L. Reinisch, D. Smith, and J. A. Werkhaven, "Noninvasive fluorescent identification of bacteria causing acute otitis media in a chinchilla model," Laryngoscope 110, 1119-1123 (2000).
[CrossRef] [PubMed]

1998 (1)

1994 (3)

D. H. Bergey and J. G. Holt, "Bergey's Manual of Determinative Bacteriology, 9th ed., J.G.Holt (Williams and Wilkins Europe, Ltd., 1994).

L. Reinisch, J. Tribble, J. A. Werkhaven, and R. H. Ossoff, "Non-invasive optical diagnosis of bacteria causing otitis media," Laryngoscope 104, 264-268 (1994).
[PubMed]

M. J. Sorrel, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, "Bacteria identification of otitis media with fluorescence spectroscopy," Lasers Surg. Med. 14, 155-163 (1994).
[CrossRef]

1993 (1)

B. V. Bronk and L. Reinisch, "Variability of steady state bacterial fluorescence with respect to growth conditions," Appl. Spectrosc. 47, 436-440 (1993).
[CrossRef]

1992 (1)

A. Balows, The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, and Applications, A. Balows, H. Truper, M. Dworkin, M. Harder, and K.Schleifer, eds. (Springer-Verlag, 1992).

1987 (1)

1986 (2)

1985 (2)

J. T. Coburn, F. E. Lytle, and D. M. Huber, "Identification of bacterial pathogens by laser excited fluorescence," Anal. Chem. 57, 1669-1673 (1985).
[CrossRef]

T. M. Rossi and I. M. Warner, "Bacterial identification using fluorescence spectroscopy," in Rapid Detection and Identification of Microorganisms, W. H. Nelson, ed. (Verlag Chemie, 1985), pp. 1-50.

1983 (1)

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum Press, 1983).

1980 (2)

D. C. Shelly, J. M. Quarles, and I. M. Warner, "Identification of fluorescent Pseudomonas species," Clin. Chem. 26, 1127-1132 (1980).
[PubMed]

D. C. Shelly, I. M. Warner, and J. M Quarles, "A multiparameter approach to the fingerprinting of fluorescent Pseudomonads," Clin. Chem. 26, 1419-1424 (1980).
[PubMed]

1979 (1)

I. Munro, I. Pecht, and L. Stryer, "Sub nanosecond motions of tryptophan residues in proteins," Proc. Natl Acad. Sci. USA 76, 56-60 (1979).
[CrossRef] [PubMed]

Anderson, J. E.

C. B. Smith, J. E. Anderson, and S. R. Webb, "Detection of Bacillus endospores using total luminescence spectroscopy," Spectrochim. Acta Part A 60, 2517-2521 (2004).
[CrossRef]

Baker, A.

S. Elliott, J. R. Lead, and A. Baker, "Characterization of the fluorescence from freshwater, planktonic bacteria," Water Res. 40, 2075-2083 (2006).
[CrossRef] [PubMed]

S. Elliott, J. R. Lead, and A. Baker, "Thermal quenching of fluorescence of freshwater, planktonic bacteria," Anal. Chim. Acta 564, 219-225 (2006).
[CrossRef]

Balows, A.

A. Balows, The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, and Applications, A. Balows, H. Truper, M. Dworkin, M. Harder, and K.Schleifer, eds. (Springer-Verlag, 1992).

Bergey, D. H.

D. H. Bergey and J. G. Holt, "Bergey's Manual of Determinative Bacteriology, 9th ed., J.G.Holt (Williams and Wilkins Europe, Ltd., 1994).

Britt, D.

Bronk, B. V.

B. V. Bronk and L. Reinisch, "Variability of steady state bacterial fluorescence with respect to growth conditions," Appl. Spectrosc. 47, 436-440 (1993).
[CrossRef]

Brosseau, L. M.

L. M. Brosseau, D. Vesley, N. Rice, J., Goodell, M. Nellis, and P. Hairston, "Differences in detected fluorescence among several bacterial species measured with a direct-reading particle sizer and fluorescence detector," Aerosol Sci. Technol. 32, 545-558 (2000).
[CrossRef]

Chacko, E.

Coburn, J. T.

J. T. Coburn, F. E. Lytle, and D. M. Huber, "Identification of bacterial pathogens by laser excited fluorescence," Anal. Chem. 57, 1669-1673 (1985).
[CrossRef]

Dalterio, R. A.

Elliott, S.

S. Elliott, J. R. Lead, and A. Baker, "Thermal quenching of fluorescence of freshwater, planktonic bacteria," Anal. Chim. Acta 564, 219-225 (2006).
[CrossRef]

S. Elliott, J. R. Lead, and A. Baker, "Characterization of the fluorescence from freshwater, planktonic bacteria," Water Res. 40, 2075-2083 (2006).
[CrossRef] [PubMed]

Eversole, J. D.

Giana, H. E.

H. E. Giana, L. Silveira, R. A. Zangaro, and M. T. T. Pacheco, "Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis," J. Fluoresc. 13, 489-493 (2003).

Goodell, J.

L. M. Brosseau, D. Vesley, N. Rice, J., Goodell, M. Nellis, and P. Hairston, "Differences in detected fluorescence among several bacterial species measured with a direct-reading particle sizer and fluorescence detector," Aerosol Sci. Technol. 32, 545-558 (2000).
[CrossRef]

Hairston, P.

L. M. Brosseau, D. Vesley, N. Rice, J., Goodell, M. Nellis, and P. Hairston, "Differences in detected fluorescence among several bacterial species measured with a direct-reading particle sizer and fluorescence detector," Aerosol Sci. Technol. 32, 545-558 (2000).
[CrossRef]

Ho, J.

J. Ho, "Future of biological aerosol detection," Anal. Chim. Acta 457, 125-148 (2002).
[CrossRef]

Holt, J. G.

D. H. Bergey and J. G. Holt, "Bergey's Manual of Determinative Bacteriology, 9th ed., J.G.Holt (Williams and Wilkins Europe, Ltd., 1994).

Huber, D. M.

J. T. Coburn, F. E. Lytle, and D. M. Huber, "Identification of bacterial pathogens by laser excited fluorescence," Anal. Chem. 57, 1669-1673 (1985).
[CrossRef]

Jollifee, I. T.

I. T.Jollifee, Principal Component Analysis (Springer-Verlag, 1986).

Kunnil, J.

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum Press, 1983).

Lead, J. R.

S. Elliott, J. R. Lead, and A. Baker, "Thermal quenching of fluorescence of freshwater, planktonic bacteria," Anal. Chim. Acta 564, 219-225 (2006).
[CrossRef]

S. Elliott, J. R. Lead, and A. Baker, "Characterization of the fluorescence from freshwater, planktonic bacteria," Water Res. 40, 2075-2083 (2006).
[CrossRef] [PubMed]

Lytle, F. E.

J. T. Coburn, F. E. Lytle, and D. M. Huber, "Identification of bacterial pathogens by laser excited fluorescence," Anal. Chem. 57, 1669-1673 (1985).
[CrossRef]

Munro, I.

I. Munro, I. Pecht, and L. Stryer, "Sub nanosecond motions of tryptophan residues in proteins," Proc. Natl Acad. Sci. USA 76, 56-60 (1979).
[CrossRef] [PubMed]

Nellis, M.

L. M. Brosseau, D. Vesley, N. Rice, J., Goodell, M. Nellis, and P. Hairston, "Differences in detected fluorescence among several bacterial species measured with a direct-reading particle sizer and fluorescence detector," Aerosol Sci. Technol. 32, 545-558 (2000).
[CrossRef]

Nelson, W. H.

Ossoff, R. H.

L. Reinisch, J. Tribble, J. A. Werkhaven, and R. H. Ossoff, "Non-invasive optical diagnosis of bacteria causing otitis media," Laryngoscope 104, 264-268 (1994).
[PubMed]

M. J. Sorrel, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, "Bacteria identification of otitis media with fluorescence spectroscopy," Lasers Surg. Med. 14, 155-163 (1994).
[CrossRef]

Pacheco, M. T. T.

H. E. Giana, L. Silveira, R. A. Zangaro, and M. T. T. Pacheco, "Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis," J. Fluoresc. 13, 489-493 (2003).

Pecht, I.

I. Munro, I. Pecht, and L. Stryer, "Sub nanosecond motions of tryptophan residues in proteins," Proc. Natl Acad. Sci. USA 76, 56-60 (1979).
[CrossRef] [PubMed]

Pinto, J. F.

Quarles, J. M

D. C. Shelly, I. M. Warner, and J. M Quarles, "A multiparameter approach to the fingerprinting of fluorescent Pseudomonads," Clin. Chem. 26, 1419-1424 (1980).
[PubMed]

Quarles, J. M.

D. C. Shelly, J. M. Quarles, and I. M. Warner, "Identification of fluorescent Pseudomonas species," Clin. Chem. 26, 1127-1132 (1980).
[PubMed]

Reinisch, L.

J. Kunnil, S. Sarasanandarajah, E. Chacko, and L. Reinisch, "Effect of washing on identification of Bacillus spores by principal-component analysis of fluorescence data," Appl. Opt. 45, 3659-3664 (2006).
[CrossRef] [PubMed]

B. C. Spector, L. Reinisch, D. Smith, and J. A. Werkhaven, "Noninvasive fluorescent identification of bacteria causing acute otitis media in a chinchilla model," Laryngoscope 110, 1119-1123 (2000).
[CrossRef] [PubMed]

M. J. Sorrel, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, "Bacteria identification of otitis media with fluorescence spectroscopy," Lasers Surg. Med. 14, 155-163 (1994).
[CrossRef]

L. Reinisch, J. Tribble, J. A. Werkhaven, and R. H. Ossoff, "Non-invasive optical diagnosis of bacteria causing otitis media," Laryngoscope 104, 264-268 (1994).
[PubMed]

B. V. Bronk and L. Reinisch, "Variability of steady state bacterial fluorescence with respect to growth conditions," Appl. Spectrosc. 47, 436-440 (1993).
[CrossRef]

Rice, N.

L. M. Brosseau, D. Vesley, N. Rice, J., Goodell, M. Nellis, and P. Hairston, "Differences in detected fluorescence among several bacterial species measured with a direct-reading particle sizer and fluorescence detector," Aerosol Sci. Technol. 32, 545-558 (2000).
[CrossRef]

Roselle, D. C.

Rossi, T. M.

T. M. Rossi and I. M. Warner, "Bacterial identification using fluorescence spectroscopy," in Rapid Detection and Identification of Microorganisms, W. H. Nelson, ed. (Verlag Chemie, 1985), pp. 1-50.

Sarasanandarajah, S.

Seaver, M.

Shelly, D. C.

D. C. Shelly, I. M. Warner, and J. M Quarles, "A multiparameter approach to the fingerprinting of fluorescent Pseudomonads," Clin. Chem. 26, 1419-1424 (1980).
[PubMed]

D. C. Shelly, J. M. Quarles, and I. M. Warner, "Identification of fluorescent Pseudomonas species," Clin. Chem. 26, 1127-1132 (1980).
[PubMed]

Silveira, L.

H. E. Giana, L. Silveira, R. A. Zangaro, and M. T. T. Pacheco, "Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis," J. Fluoresc. 13, 489-493 (2003).

Smith, C. B.

C. B. Smith, J. E. Anderson, and S. R. Webb, "Detection of Bacillus endospores using total luminescence spectroscopy," Spectrochim. Acta Part A 60, 2517-2521 (2004).
[CrossRef]

Smith, D.

B. C. Spector, L. Reinisch, D. Smith, and J. A. Werkhaven, "Noninvasive fluorescent identification of bacteria causing acute otitis media in a chinchilla model," Laryngoscope 110, 1119-1123 (2000).
[CrossRef] [PubMed]

Sorrel, M. J.

M. J. Sorrel, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, "Bacteria identification of otitis media with fluorescence spectroscopy," Lasers Surg. Med. 14, 155-163 (1994).
[CrossRef]

Spector, B. C.

B. C. Spector, L. Reinisch, D. Smith, and J. A. Werkhaven, "Noninvasive fluorescent identification of bacteria causing acute otitis media in a chinchilla model," Laryngoscope 110, 1119-1123 (2000).
[CrossRef] [PubMed]

Sperry, J. F.

Stryer, L.

I. Munro, I. Pecht, and L. Stryer, "Sub nanosecond motions of tryptophan residues in proteins," Proc. Natl Acad. Sci. USA 76, 56-60 (1979).
[CrossRef] [PubMed]

Suib, S. L.

Tanguay, J. F.

Tribble, J.

L. Reinisch, J. Tribble, J. A. Werkhaven, and R. H. Ossoff, "Non-invasive optical diagnosis of bacteria causing otitis media," Laryngoscope 104, 264-268 (1994).
[PubMed]

M. J. Sorrel, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, "Bacteria identification of otitis media with fluorescence spectroscopy," Lasers Surg. Med. 14, 155-163 (1994).
[CrossRef]

Vesley, D.

L. M. Brosseau, D. Vesley, N. Rice, J., Goodell, M. Nellis, and P. Hairston, "Differences in detected fluorescence among several bacterial species measured with a direct-reading particle sizer and fluorescence detector," Aerosol Sci. Technol. 32, 545-558 (2000).
[CrossRef]

Warner, I. M.

T. M. Rossi and I. M. Warner, "Bacterial identification using fluorescence spectroscopy," in Rapid Detection and Identification of Microorganisms, W. H. Nelson, ed. (Verlag Chemie, 1985), pp. 1-50.

D. C. Shelly, I. M. Warner, and J. M Quarles, "A multiparameter approach to the fingerprinting of fluorescent Pseudomonads," Clin. Chem. 26, 1419-1424 (1980).
[PubMed]

D. C. Shelly, J. M. Quarles, and I. M. Warner, "Identification of fluorescent Pseudomonas species," Clin. Chem. 26, 1127-1132 (1980).
[PubMed]

Webb, S. R.

C. B. Smith, J. E. Anderson, and S. R. Webb, "Detection of Bacillus endospores using total luminescence spectroscopy," Spectrochim. Acta Part A 60, 2517-2521 (2004).
[CrossRef]

Werkhaven, J. A.

B. C. Spector, L. Reinisch, D. Smith, and J. A. Werkhaven, "Noninvasive fluorescent identification of bacteria causing acute otitis media in a chinchilla model," Laryngoscope 110, 1119-1123 (2000).
[CrossRef] [PubMed]

M. J. Sorrel, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, "Bacteria identification of otitis media with fluorescence spectroscopy," Lasers Surg. Med. 14, 155-163 (1994).
[CrossRef]

L. Reinisch, J. Tribble, J. A. Werkhaven, and R. H. Ossoff, "Non-invasive optical diagnosis of bacteria causing otitis media," Laryngoscope 104, 264-268 (1994).
[PubMed]

Zangaro, R. A.

H. E. Giana, L. Silveira, R. A. Zangaro, and M. T. T. Pacheco, "Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis," J. Fluoresc. 13, 489-493 (2003).

Aerosol Sci. Technol. (1)

L. M. Brosseau, D. Vesley, N. Rice, J., Goodell, M. Nellis, and P. Hairston, "Differences in detected fluorescence among several bacterial species measured with a direct-reading particle sizer and fluorescence detector," Aerosol Sci. Technol. 32, 545-558 (2000).
[CrossRef]

Anal. Chim. Acta (1)

J. Ho, "Future of biological aerosol detection," Anal. Chim. Acta 457, 125-148 (2002).
[CrossRef]

Anal. Chem. (1)

J. T. Coburn, F. E. Lytle, and D. M. Huber, "Identification of bacterial pathogens by laser excited fluorescence," Anal. Chem. 57, 1669-1673 (1985).
[CrossRef]

Anal. Chim. Acta (1)

S. Elliott, J. R. Lead, and A. Baker, "Thermal quenching of fluorescence of freshwater, planktonic bacteria," Anal. Chim. Acta 564, 219-225 (2006).
[CrossRef]

Appl. Spectrosc. (1)

B. V. Bronk and L. Reinisch, "Variability of steady state bacterial fluorescence with respect to growth conditions," Appl. Spectrosc. 47, 436-440 (1993).
[CrossRef]

Appl. Opt. (2)

Appl. Spectrosc. (2)

Clin. Chem. (1)

D. C. Shelly, J. M. Quarles, and I. M. Warner, "Identification of fluorescent Pseudomonas species," Clin. Chem. 26, 1127-1132 (1980).
[PubMed]

Clin. Chem. (1)

D. C. Shelly, I. M. Warner, and J. M Quarles, "A multiparameter approach to the fingerprinting of fluorescent Pseudomonads," Clin. Chem. 26, 1419-1424 (1980).
[PubMed]

Laryngoscope (2)

L. Reinisch, J. Tribble, J. A. Werkhaven, and R. H. Ossoff, "Non-invasive optical diagnosis of bacteria causing otitis media," Laryngoscope 104, 264-268 (1994).
[PubMed]

B. C. Spector, L. Reinisch, D. Smith, and J. A. Werkhaven, "Noninvasive fluorescent identification of bacteria causing acute otitis media in a chinchilla model," Laryngoscope 110, 1119-1123 (2000).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

M. J. Sorrel, J. Tribble, L. Reinisch, J. A. Werkhaven, and R. H. Ossoff, "Bacteria identification of otitis media with fluorescence spectroscopy," Lasers Surg. Med. 14, 155-163 (1994).
[CrossRef]

Proc. Natl Acad. Sci. USA (1)

I. Munro, I. Pecht, and L. Stryer, "Sub nanosecond motions of tryptophan residues in proteins," Proc. Natl Acad. Sci. USA 76, 56-60 (1979).
[CrossRef] [PubMed]

Spectrochim. Acta Part A (1)

C. B. Smith, J. E. Anderson, and S. R. Webb, "Detection of Bacillus endospores using total luminescence spectroscopy," Spectrochim. Acta Part A 60, 2517-2521 (2004).
[CrossRef]

Water Res. (1)

S. Elliott, J. R. Lead, and A. Baker, "Characterization of the fluorescence from freshwater, planktonic bacteria," Water Res. 40, 2075-2083 (2006).
[CrossRef] [PubMed]

Other (6)

T. M. Rossi and I. M. Warner, "Bacterial identification using fluorescence spectroscopy," in Rapid Detection and Identification of Microorganisms, W. H. Nelson, ed. (Verlag Chemie, 1985), pp. 1-50.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum Press, 1983).

H. E. Giana, L. Silveira, R. A. Zangaro, and M. T. T. Pacheco, "Rapid identification of bacterial species by fluorescence spectroscopy and classification through principal components analysis," J. Fluoresc. 13, 489-493 (2003).

I. T.Jollifee, Principal Component Analysis (Springer-Verlag, 1986).

D. H. Bergey and J. G. Holt, "Bergey's Manual of Determinative Bacteriology, 9th ed., J.G.Holt (Williams and Wilkins Europe, Ltd., 1994).

A. Balows, The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, and Applications, A. Balows, H. Truper, M. Dworkin, M. Harder, and K.Schleifer, eds. (Springer-Verlag, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Fluorescence profiles from King's B broth (A) and nutrient broth (B) without any bacteria. The dark shading the more fluorescence. The lines equally divide the maximum and minimum fluorescence into 15 contours. All spectra were normalized to the same maximum intensity.

Fig. 2
Fig. 2

Fluorescence profiles from Pseudomonas aeruginosa grown in King's B broth (A, C, E, and G) and nutrient broth (B, D, F, and H). (A) and (B) are the fluorescence profiles of the bacteria in the growth medium. (C) and (D) are after one wash, (E) and (F) are after two washes, and (G) and (H) are after three washes. The dark shading the more fluorescence. The lines equally divide the maximum and minimum fluorescence into 15 contours. All spectra were normalized to the same maximum intensity.

Fig. 3
Fig. 3

Principal component 2 versus principal component 1 for the samples measured in this study. The open symbols are samples grown in King's B broth and the filled symbols are samples grown in nutrient broth. The x are King's B broth samples, the + are nutrient broth samples. The circles are bacteria measured in the growth broth. The squares are samples after one washing. The triangles are samples after two washings. The hexagons are samples after three washings. The ovals are drawn to demonstrate the groupings.

Fig. 4
Fig. 4

Principal component 3 versus principal component 2 for the samples measured in this study. The open symbols are samples grown in King's B broth and the filled symbols are samples grown in nutrient broth. The x are King's B broth samples, the + are nutrient broth samples. The circles are bacteria measured in the growth broth. The squares are samples after one washing. The triangles are samples after two washings. The hexagons are samples after three washings. The ovals are drawn to indicate the rough groupings in the data.

Fig. 5
Fig. 5

Principal component 3 versus principal component 2 for the samples measured in this study. The open symbols are samples harvested after 48 h, the grey symbols are samples harvest after 24 h and filled symbols are samples harvested after 12 h. The circles are bacteria measured in the growth broth. The squares are samples after one washing. The triangles are samples after two washings. The hexagons are samples after three washings. (For clarity, the broth alone samples are not shown here.)

Fig. 6
Fig. 6

Principal component 2 versus principal component 1 for the averages of the samples measured in this study. The open symbols are the averages of samples grown in King's B broth and the filled symbols are the averages of the samples grown in nutrient broth. The circles are the averages of bacteria measured in the growth broth. The squares are the averages of the samples after one washing. The triangles are the averages of the samples after two washings. The hexagons are the averages of the samples after three washings.

Fig. 7
Fig. 7

First three principal components. (A) is principal component 1 with the white = 0.053 and the black = 0.558 . (B) is principal component 2 with the white = 0.447 and the black = 0.174 . (C) is principal component 3 with the white = 0.191 and the black = 0.108 . There are 15 equally spaced contours drawn between the minimum (white) and the maximum (black).

Metrics