Abstract

We demonstrate an absorption transmission spectrum of CH4 in a 16.9  cm long index-guiding photonic crystal fiber (PCF) fabricated in our laboratory. One of the main factors to improve the sensitivity is to increase the fraction of power in PCF cladding air holes. We study the fraction of power in PCF cladding air holes as a function of the index-guiding PCF parameters. We found that a PCF with small spacing and a large air-filling ratio has a higher fraction of power in its cladding air holes. At the same time the mode area in this PCF is small and would generate strong nonlinear effects in the fiber. If we use a PCF in which the core is formed by missing seven air holes, it is immediately obvious that the PCF used as a sensor has higher sensitivity and a larger mode area.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, "Modeling the fabrication of hollow fibers: capillary drawing," J. Lightwave Technol. 19, 1924-1931 (2001).
    [CrossRef]
  2. N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, "Fabrication and study of microstructured optical fibers with elliptical holes," Opt. Lett. 29, 1336-1338 (2004).
    [CrossRef] [PubMed]
  3. Zhou Guiyao, Hou Zhiyun, Li Shuguang, and Hou Lantian, "Mathematical model for fabrication of micro-structure fibres," Chin. Phys. Lett. 22, 1162-1165 (2005).
    [CrossRef]
  4. C. Kerbage, B. Eggleton, P. Westbrook, and R. Windeler, "Experimental and scalar beam propagation analysis of an air-silica microstructure fiber," Opt. Express 7, 113-122 (2000).
    [CrossRef] [PubMed]
  5. K. Saitoh and M. Koshiba, "Empirical relations for simple design of photonic crystal fibers," Opt. Express 13, 267-274 (2005).
    [CrossRef] [PubMed]
  6. A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan, and P. St. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005).
    [CrossRef] [PubMed]
  7. M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, "Phase and group modal birefringence of triple-defect photonic crystal fibres," J. Opt. A 7, 763-766 (2005).
    [CrossRef]
  8. T. Schreiber, H. Schultz, O. Schmidt, F. Röser, J. Limpert, and A. Tünnermann, "Stress-induced birefringence in large-mode-area micro-structured optical fibers," Opt. Express 13, 3637-3646 (2005).
    [CrossRef] [PubMed]
  9. M. S. Alam, K. Saitoh, and M. Koshiba, "High group birefringence in air-core photonic bandgap fibers," Opt. Lett. 30, 824-826 (2005).
    [CrossRef] [PubMed]
  10. Lou Shu-Qin, Wang Zhi, Ren Guo-Bin, and Jian Shui-Sheng, "Propagation properties of an index guiding high birefringence fibre," Chin. Phys. 13, 1493-1499 (2004).
    [CrossRef]
  11. M. L. Hu, C. Wang, L. Chai, Y. Li, K. V. Dukel'skii, A. V. Khokhlov, V. S. Shevandin, Yu. N. Kondrat'ev, and A. M. Zheltikov, "Birefringence-controlled anti-Stokes line emission from a microstructure fiber," Laser Phys. Lett. 1, 299-302 (2004).
    [CrossRef]
  12. M. Hu, C-y. Wang, Y. Li, L. Chai, Y. N. Kondrat'ev, C. Sibilia, and A. M. Zheltikov, "An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field," Appl. Phys. B 79, 805-809 (2004).
    [CrossRef]
  13. W. J. Bock, W. Urbanczyk, and J. Wojcik, "Measurements of sensitivity of the single-mode photonic crystal holey fibre to temperature, elongation and hydrostatic pressure," Meas. Sci. Technol. 15, 1496-1500 (2004).
    [CrossRef]
  14. G. Statkiewicz, T. Martynkien, and W. Urbanczyk, "Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain," Opt. Commun. 241, 339-348 (2004).
    [CrossRef]
  15. T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, "Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry," Appl. Phys. B 81, 325-331 (2005).
    [CrossRef]
  16. W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Opt. Commun. 193, 97-104 (2001).
    [CrossRef]
  17. A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, "Refractive index sensor based on microstructured fiber Bragg grating," IEEE Photon. Technol. Lett. 17, 1250-1252 (2005).
    [CrossRef]
  18. N. M. Litchinitser and E. Poliakov, "Antiresonant guiding microstructured optical fibers for sensing applications," Appl. Phys. B 81, 347-351 (2005).
    [CrossRef]
  19. J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
    [CrossRef]
  20. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sorensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express , 12, 4080-4087 (2004).
    [CrossRef] [PubMed]
  21. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, and T. P. Hansen, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004).
    [CrossRef] [PubMed]
  22. G. Stewart, W. Jin, and B. Culshaw, "Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared," Sens. Actuators B 38-39, 42-47 (1997).
    [CrossRef]
  23. Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, "Evanescent-wave gas sensing using microstructure fiber," Opt. Eng. 41, 8-9 (2002).
    [CrossRef]
  24. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, "Design and modeling of a photonic crystal fiber gas sensor," Appl. Opt. 42, 3509-3515 (2003).
    [CrossRef] [PubMed]
  25. G. Pickrell, W. Peng, and A. Wang, "Random-hole optical fiber evanescent-wave gas sensing," Opt. Lett. 29, 1476-1478 (2004).
    [CrossRef] [PubMed]
  26. N. J. Florous, S. K. Varsheney, K. Saitoh, and M. Koshiba, "Thermooptical sensitivity analysis of highly birefringent polarimetric sensing photonic crystal fibers with elliptically elongated veins," IEEE Photon. Technol. Lett. 18, 1663-1665 (2006).
    [CrossRef]
  27. N. J. Florous, K. Saitoh, S. K. Varsheney, and M. Koshiba, "Fluidic sensors based on photonic crystal fiber gratings: impact of the ambient temperature," IEEE Photon. Technol. Lett. 18, 2206-2208 (2006).
    [CrossRef]
  28. J. C. Owens, "Optical refractive index of air: dependence on pressure, temperature, and composition," Appl. Opt. 6, 51-59 (1967).
    [CrossRef] [PubMed]
  29. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, "Near- and mid-infrared laser optical sensor for gas analysis," Opt. Lasers Eng. 37, 101-114 (2002).
    [CrossRef]
  30. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. M. de Sterke, and L. C. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002).
    [CrossRef]
  31. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. M. de Sterke, and R. C. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19, 2331-2340 (2002).
    [CrossRef]

2006 (2)

N. J. Florous, S. K. Varsheney, K. Saitoh, and M. Koshiba, "Thermooptical sensitivity analysis of highly birefringent polarimetric sensing photonic crystal fibers with elliptically elongated veins," IEEE Photon. Technol. Lett. 18, 1663-1665 (2006).
[CrossRef]

N. J. Florous, K. Saitoh, S. K. Varsheney, and M. Koshiba, "Fluidic sensors based on photonic crystal fiber gratings: impact of the ambient temperature," IEEE Photon. Technol. Lett. 18, 2206-2208 (2006).
[CrossRef]

2005 (9)

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, "Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry," Appl. Phys. B 81, 325-331 (2005).
[CrossRef]

Zhou Guiyao, Hou Zhiyun, Li Shuguang, and Hou Lantian, "Mathematical model for fabrication of micro-structure fibres," Chin. Phys. Lett. 22, 1162-1165 (2005).
[CrossRef]

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, "Phase and group modal birefringence of triple-defect photonic crystal fibres," J. Opt. A 7, 763-766 (2005).
[CrossRef]

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, "Refractive index sensor based on microstructured fiber Bragg grating," IEEE Photon. Technol. Lett. 17, 1250-1252 (2005).
[CrossRef]

N. M. Litchinitser and E. Poliakov, "Antiresonant guiding microstructured optical fibers for sensing applications," Appl. Phys. B 81, 347-351 (2005).
[CrossRef]

K. Saitoh and M. Koshiba, "Empirical relations for simple design of photonic crystal fibers," Opt. Express 13, 267-274 (2005).
[CrossRef] [PubMed]

A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan, and P. St. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005).
[CrossRef] [PubMed]

M. S. Alam, K. Saitoh, and M. Koshiba, "High group birefringence in air-core photonic bandgap fibers," Opt. Lett. 30, 824-826 (2005).
[CrossRef] [PubMed]

T. Schreiber, H. Schultz, O. Schmidt, F. Röser, J. Limpert, and A. Tünnermann, "Stress-induced birefringence in large-mode-area micro-structured optical fibers," Opt. Express 13, 3637-3646 (2005).
[CrossRef] [PubMed]

2004 (10)

N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, "Fabrication and study of microstructured optical fibers with elliptical holes," Opt. Lett. 29, 1336-1338 (2004).
[CrossRef] [PubMed]

G. Pickrell, W. Peng, and A. Wang, "Random-hole optical fiber evanescent-wave gas sensing," Opt. Lett. 29, 1476-1478 (2004).
[CrossRef] [PubMed]

T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sorensen, T. P. Hansen, and H. R. Simonsen, "Gas sensing using air-guiding photonic bandgap fibers," Opt. Express , 12, 4080-4087 (2004).
[CrossRef] [PubMed]

J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, and T. P. Hansen, "Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions," Opt. Lett. 29, 1974-1976 (2004).
[CrossRef] [PubMed]

J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

Lou Shu-Qin, Wang Zhi, Ren Guo-Bin, and Jian Shui-Sheng, "Propagation properties of an index guiding high birefringence fibre," Chin. Phys. 13, 1493-1499 (2004).
[CrossRef]

M. L. Hu, C. Wang, L. Chai, Y. Li, K. V. Dukel'skii, A. V. Khokhlov, V. S. Shevandin, Yu. N. Kondrat'ev, and A. M. Zheltikov, "Birefringence-controlled anti-Stokes line emission from a microstructure fiber," Laser Phys. Lett. 1, 299-302 (2004).
[CrossRef]

M. Hu, C-y. Wang, Y. Li, L. Chai, Y. N. Kondrat'ev, C. Sibilia, and A. M. Zheltikov, "An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field," Appl. Phys. B 79, 805-809 (2004).
[CrossRef]

W. J. Bock, W. Urbanczyk, and J. Wojcik, "Measurements of sensitivity of the single-mode photonic crystal holey fibre to temperature, elongation and hydrostatic pressure," Meas. Sci. Technol. 15, 1496-1500 (2004).
[CrossRef]

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, "Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain," Opt. Commun. 241, 339-348 (2004).
[CrossRef]

2003 (1)

2002 (4)

2001 (2)

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Opt. Commun. 193, 97-104 (2001).
[CrossRef]

A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, "Modeling the fabrication of hollow fibers: capillary drawing," J. Lightwave Technol. 19, 1924-1931 (2001).
[CrossRef]

2000 (1)

1997 (1)

G. Stewart, W. Jin, and B. Culshaw, "Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared," Sens. Actuators B 38-39, 42-47 (1997).
[CrossRef]

1967 (1)

Alam, M. S.

Antkowiak, M.

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, "Phase and group modal birefringence of triple-defect photonic crystal fibres," J. Opt. A 7, 763-766 (2005).
[CrossRef]

Argyros, A.

Berghmans, F.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, "Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry," Appl. Phys. B 81, 325-331 (2005).
[CrossRef]

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, "Phase and group modal birefringence of triple-defect photonic crystal fibres," J. Opt. A 7, 763-766 (2005).
[CrossRef]

Birks, T.

Birks, T. A.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Opt. Commun. 193, 97-104 (2001).
[CrossRef]

Blanchard, P. M.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Opt. Commun. 193, 97-104 (2001).
[CrossRef]

Bock, W. J.

W. J. Bock, W. Urbanczyk, and J. Wojcik, "Measurements of sensitivity of the single-mode photonic crystal holey fibre to temperature, elongation and hydrostatic pressure," Meas. Sci. Technol. 15, 1496-1500 (2004).
[CrossRef]

Botten, L. C.

Burnett, J. G.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Opt. Commun. 193, 97-104 (2001).
[CrossRef]

Campopiano, S.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, "Refractive index sensor based on microstructured fiber Bragg grating," IEEE Photon. Technol. Lett. 17, 1250-1252 (2005).
[CrossRef]

Chai, L.

M. Hu, C-y. Wang, Y. Li, L. Chai, Y. N. Kondrat'ev, C. Sibilia, and A. M. Zheltikov, "An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field," Appl. Phys. B 79, 805-809 (2004).
[CrossRef]

M. L. Hu, C. Wang, L. Chai, Y. Li, K. V. Dukel'skii, A. V. Khokhlov, V. S. Shevandin, Yu. N. Kondrat'ev, and A. M. Zheltikov, "Birefringence-controlled anti-Stokes line emission from a microstructure fiber," Laser Phys. Lett. 1, 299-302 (2004).
[CrossRef]

Cordeiro, C. M.

Cox, F.

Culshaw, B.

G. Stewart, W. Jin, and B. Culshaw, "Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared," Sens. Actuators B 38-39, 42-47 (1997).
[CrossRef]

Cusano, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, "Refractive index sensor based on microstructured fiber Bragg grating," IEEE Photon. Technol. Lett. 17, 1250-1252 (2005).
[CrossRef]

Cutolo, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, "Refractive index sensor based on microstructured fiber Bragg grating," IEEE Photon. Technol. Lett. 17, 1250-1252 (2005).
[CrossRef]

de Sterke, C. M.

Dukel'skii, K. V.

M. L. Hu, C. Wang, L. Chai, Y. Li, K. V. Dukel'skii, A. V. Khokhlov, V. S. Shevandin, Yu. N. Kondrat'ev, and A. M. Zheltikov, "Birefringence-controlled anti-Stokes line emission from a microstructure fiber," Laser Phys. Lett. 1, 299-302 (2004).
[CrossRef]

Eggleton, B.

Fellew, M.

Fini, J. M.

J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

Fitt, A. D.

Florous, N. J.

N. J. Florous, S. K. Varsheney, K. Saitoh, and M. Koshiba, "Thermooptical sensitivity analysis of highly birefringent polarimetric sensing photonic crystal fibers with elliptically elongated veins," IEEE Photon. Technol. Lett. 18, 1663-1665 (2006).
[CrossRef]

N. J. Florous, K. Saitoh, S. K. Varsheney, and M. Koshiba, "Fluidic sensors based on photonic crystal fiber gratings: impact of the ambient temperature," IEEE Photon. Technol. Lett. 18, 2206-2208 (2006).
[CrossRef]

Furusawa, K.

Gander, M. J.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Opt. Commun. 193, 97-104 (2001).
[CrossRef]

Giordano, M.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, "Refractive index sensor based on microstructured fiber Bragg grating," IEEE Photon. Technol. Lett. 17, 1250-1252 (2005).
[CrossRef]

Golojuch, G.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, "Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry," Appl. Phys. B 81, 325-331 (2005).
[CrossRef]

Greenaway, A. H.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Opt. Commun. 193, 97-104 (2001).
[CrossRef]

Guiyao, Zhou

Zhou Guiyao, Hou Zhiyun, Li Shuguang, and Hou Lantian, "Mathematical model for fabrication of micro-structure fibres," Chin. Phys. Lett. 22, 1162-1165 (2005).
[CrossRef]

Guo-Bin, Ren

Lou Shu-Qin, Wang Zhi, Ren Guo-Bin, and Jian Shui-Sheng, "Propagation properties of an index guiding high birefringence fibre," Chin. Phys. 13, 1493-1499 (2004).
[CrossRef]

Hansen, T. P.

Henry, G.

Ho, H. L.

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, "Design and modeling of a photonic crystal fiber gas sensor," Appl. Opt. 42, 3509-3515 (2003).
[CrossRef] [PubMed]

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, "Evanescent-wave gas sensing using microstructure fiber," Opt. Eng. 41, 8-9 (2002).
[CrossRef]

Hoiby, P. E.

Hoo, Y. L.

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, "Design and modeling of a photonic crystal fiber gas sensor," Appl. Opt. 42, 3509-3515 (2003).
[CrossRef] [PubMed]

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, "Evanescent-wave gas sensing using microstructure fiber," Opt. Eng. 41, 8-9 (2002).
[CrossRef]

Hu, M.

M. Hu, C-y. Wang, Y. Li, L. Chai, Y. N. Kondrat'ev, C. Sibilia, and A. M. Zheltikov, "An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field," Appl. Phys. B 79, 805-809 (2004).
[CrossRef]

Hu, M. L.

M. L. Hu, C. Wang, L. Chai, Y. Li, K. V. Dukel'skii, A. V. Khokhlov, V. S. Shevandin, Yu. N. Kondrat'ev, and A. M. Zheltikov, "Birefringence-controlled anti-Stokes line emission from a microstructure fiber," Laser Phys. Lett. 1, 299-302 (2004).
[CrossRef]

Iadicicco, A.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, "Refractive index sensor based on microstructured fiber Bragg grating," IEEE Photon. Technol. Lett. 17, 1250-1252 (2005).
[CrossRef]

Issa, N. A.

Jänker, B.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, "Near- and mid-infrared laser optical sensor for gas analysis," Opt. Lasers Eng. 37, 101-114 (2002).
[CrossRef]

Jensen, J. B.

Jin, W.

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, "Design and modeling of a photonic crystal fiber gas sensor," Appl. Opt. 42, 3509-3515 (2003).
[CrossRef] [PubMed]

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, "Evanescent-wave gas sensing using microstructure fiber," Opt. Eng. 41, 8-9 (2002).
[CrossRef]

G. Stewart, W. Jin, and B. Culshaw, "Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared," Sens. Actuators B 38-39, 42-47 (1997).
[CrossRef]

Jones, J. D. C.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Opt. Commun. 193, 97-104 (2001).
[CrossRef]

Kerbage, C.

Khokhlov, A. V.

M. L. Hu, C. Wang, L. Chai, Y. Li, K. V. Dukel'skii, A. V. Khokhlov, V. S. Shevandin, Yu. N. Kondrat'ev, and A. M. Zheltikov, "Birefringence-controlled anti-Stokes line emission from a microstructure fiber," Laser Phys. Lett. 1, 299-302 (2004).
[CrossRef]

Knight, J. C.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Opt. Commun. 193, 97-104 (2001).
[CrossRef]

Kondrat'ev, Y. N.

M. Hu, C-y. Wang, Y. Li, L. Chai, Y. N. Kondrat'ev, C. Sibilia, and A. M. Zheltikov, "An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field," Appl. Phys. B 79, 805-809 (2004).
[CrossRef]

Kondrat'ev, Yu. N.

M. L. Hu, C. Wang, L. Chai, Y. Li, K. V. Dukel'skii, A. V. Khokhlov, V. S. Shevandin, Yu. N. Kondrat'ev, and A. M. Zheltikov, "Birefringence-controlled anti-Stokes line emission from a microstructure fiber," Laser Phys. Lett. 1, 299-302 (2004).
[CrossRef]

Kormann, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, "Near- and mid-infrared laser optical sensor for gas analysis," Opt. Lasers Eng. 37, 101-114 (2002).
[CrossRef]

Koshiba, M.

N. J. Florous, K. Saitoh, S. K. Varsheney, and M. Koshiba, "Fluidic sensors based on photonic crystal fiber gratings: impact of the ambient temperature," IEEE Photon. Technol. Lett. 18, 2206-2208 (2006).
[CrossRef]

N. J. Florous, S. K. Varsheney, K. Saitoh, and M. Koshiba, "Thermooptical sensitivity analysis of highly birefringent polarimetric sensing photonic crystal fibers with elliptically elongated veins," IEEE Photon. Technol. Lett. 18, 1663-1665 (2006).
[CrossRef]

K. Saitoh and M. Koshiba, "Empirical relations for simple design of photonic crystal fibers," Opt. Express 13, 267-274 (2005).
[CrossRef] [PubMed]

M. S. Alam, K. Saitoh, and M. Koshiba, "High group birefringence in air-core photonic bandgap fibers," Opt. Lett. 30, 824-826 (2005).
[CrossRef] [PubMed]

Kotynski, R.

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, "Phase and group modal birefringence of triple-defect photonic crystal fibres," J. Opt. A 7, 763-766 (2005).
[CrossRef]

Kuhlmey, B. T.

Lantian, Hou

Zhou Guiyao, Hou Zhiyun, Li Shuguang, and Hou Lantian, "Mathematical model for fabrication of micro-structure fibres," Chin. Phys. Lett. 22, 1162-1165 (2005).
[CrossRef]

Large, M. C. J.

Leon-Saval, S.

Lesiak, P.

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, "Phase and group modal birefringence of triple-defect photonic crystal fibres," J. Opt. A 7, 763-766 (2005).
[CrossRef]

Li, Y.

M. Hu, C-y. Wang, Y. Li, L. Chai, Y. N. Kondrat'ev, C. Sibilia, and A. M. Zheltikov, "An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field," Appl. Phys. B 79, 805-809 (2004).
[CrossRef]

M. L. Hu, C. Wang, L. Chai, Y. Li, K. V. Dukel'skii, A. V. Khokhlov, V. S. Shevandin, Yu. N. Kondrat'ev, and A. M. Zheltikov, "Birefringence-controlled anti-Stokes line emission from a microstructure fiber," Laser Phys. Lett. 1, 299-302 (2004).
[CrossRef]

Limpert, J.

Litchinitser, N. M.

N. M. Litchinitser and E. Poliakov, "Antiresonant guiding microstructured optical fibers for sensing applications," Appl. Phys. B 81, 347-351 (2005).
[CrossRef]

Luan, F.

Ludvigsen, H.

MacPherson, W. N.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Opt. Commun. 193, 97-104 (2001).
[CrossRef]

Makara, M.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, "Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry," Appl. Phys. B 81, 325-331 (2005).
[CrossRef]

Mangan, B.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Opt. Commun. 193, 97-104 (2001).
[CrossRef]

Martynkien, T.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, "Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry," Appl. Phys. B 81, 325-331 (2005).
[CrossRef]

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, "Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain," Opt. Commun. 241, 339-348 (2004).
[CrossRef]

Maurer, K.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, "Near- and mid-infrared laser optical sensor for gas analysis," Opt. Lasers Eng. 37, 101-114 (2002).
[CrossRef]

Maystre, D.

McBride, R.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Opt. Commun. 193, 97-104 (2001).
[CrossRef]

McPhedran, R. C.

Mergo, P.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, "Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry," Appl. Phys. B 81, 325-331 (2005).
[CrossRef]

Monro, T. M.

Mücke, R.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, "Near- and mid-infrared laser optical sensor for gas analysis," Opt. Lasers Eng. 37, 101-114 (2002).
[CrossRef]

Nasilowski, T.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, "Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry," Appl. Phys. B 81, 325-331 (2005).
[CrossRef]

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, "Phase and group modal birefringence of triple-defect photonic crystal fibres," J. Opt. A 7, 763-766 (2005).
[CrossRef]

Nielsen, L. B.

Olszewski, J.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, "Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry," Appl. Phys. B 81, 325-331 (2005).
[CrossRef]

Owens, J. C.

Pedersen, L. H.

Peng, W.

Petersen, J. C.

Pickrell, G.

Please, C. P.

Poliakov, E.

N. M. Litchinitser and E. Poliakov, "Antiresonant guiding microstructured optical fibers for sensing applications," Appl. Phys. B 81, 347-351 (2005).
[CrossRef]

Renversez, G.

Ritari, T.

Röser, F.

Ruan, S. C.

Russell, P. St. J.

A. Argyros, T. Birks, S. Leon-Saval, C. M. Cordeiro, F. Luan, and P. St. J. Russell, "Photonic bandgap with an index step of one percent," Opt. Express 13, 309-314 (2005).
[CrossRef] [PubMed]

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Opt. Commun. 193, 97-104 (2001).
[CrossRef]

Saitoh, K.

N. J. Florous, K. Saitoh, S. K. Varsheney, and M. Koshiba, "Fluidic sensors based on photonic crystal fiber gratings: impact of the ambient temperature," IEEE Photon. Technol. Lett. 18, 2206-2208 (2006).
[CrossRef]

N. J. Florous, S. K. Varsheney, K. Saitoh, and M. Koshiba, "Thermooptical sensitivity analysis of highly birefringent polarimetric sensing photonic crystal fibers with elliptically elongated veins," IEEE Photon. Technol. Lett. 18, 1663-1665 (2006).
[CrossRef]

K. Saitoh and M. Koshiba, "Empirical relations for simple design of photonic crystal fibers," Opt. Express 13, 267-274 (2005).
[CrossRef] [PubMed]

M. S. Alam, K. Saitoh, and M. Koshiba, "High group birefringence in air-core photonic bandgap fibers," Opt. Lett. 30, 824-826 (2005).
[CrossRef] [PubMed]

Schmidt, O.

Schreiber, T.

Schultz, H.

Shevandin, V. S.

M. L. Hu, C. Wang, L. Chai, Y. Li, K. V. Dukel'skii, A. V. Khokhlov, V. S. Shevandin, Yu. N. Kondrat'ev, and A. M. Zheltikov, "Birefringence-controlled anti-Stokes line emission from a microstructure fiber," Laser Phys. Lett. 1, 299-302 (2004).
[CrossRef]

Shi, C.

Shuguang, Li

Zhou Guiyao, Hou Zhiyun, Li Shuguang, and Hou Lantian, "Mathematical model for fabrication of micro-structure fibres," Chin. Phys. Lett. 22, 1162-1165 (2005).
[CrossRef]

Shui-Sheng, Jian

Lou Shu-Qin, Wang Zhi, Ren Guo-Bin, and Jian Shui-Sheng, "Propagation properties of an index guiding high birefringence fibre," Chin. Phys. 13, 1493-1499 (2004).
[CrossRef]

Shu-Qin, Lou

Lou Shu-Qin, Wang Zhi, Ren Guo-Bin, and Jian Shui-Sheng, "Propagation properties of an index guiding high birefringence fibre," Chin. Phys. 13, 1493-1499 (2004).
[CrossRef]

Sibilia, C.

M. Hu, C-y. Wang, Y. Li, L. Chai, Y. N. Kondrat'ev, C. Sibilia, and A. M. Zheltikov, "An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field," Appl. Phys. B 79, 805-809 (2004).
[CrossRef]

Simonsen, H. R.

Slemr, F.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, "Near- and mid-infrared laser optical sensor for gas analysis," Opt. Lasers Eng. 37, 101-114 (2002).
[CrossRef]

Sorensen, T.

Statkiewicz, G.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, "Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry," Appl. Phys. B 81, 325-331 (2005).
[CrossRef]

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, "Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain," Opt. Commun. 241, 339-348 (2004).
[CrossRef]

Stewart, G.

G. Stewart, W. Jin, and B. Culshaw, "Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared," Sens. Actuators B 38-39, 42-47 (1997).
[CrossRef]

Szpulak, M.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, "Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry," Appl. Phys. B 81, 325-331 (2005).
[CrossRef]

Thienpont, H.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, "Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry," Appl. Phys. B 81, 325-331 (2005).
[CrossRef]

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, "Phase and group modal birefringence of triple-defect photonic crystal fibres," J. Opt. A 7, 763-766 (2005).
[CrossRef]

Tünnermann, A.

Tuominen, J.

Urbanczyk, W.

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, "Phase and group modal birefringence of triple-defect photonic crystal fibres," J. Opt. A 7, 763-766 (2005).
[CrossRef]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, "Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry," Appl. Phys. B 81, 325-331 (2005).
[CrossRef]

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, "Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain," Opt. Commun. 241, 339-348 (2004).
[CrossRef]

W. J. Bock, W. Urbanczyk, and J. Wojcik, "Measurements of sensitivity of the single-mode photonic crystal holey fibre to temperature, elongation and hydrostatic pressure," Meas. Sci. Technol. 15, 1496-1500 (2004).
[CrossRef]

van Eijkelenborg, M. A.

Varsheney, S. K.

N. J. Florous, K. Saitoh, S. K. Varsheney, and M. Koshiba, "Fluidic sensors based on photonic crystal fiber gratings: impact of the ambient temperature," IEEE Photon. Technol. Lett. 18, 2206-2208 (2006).
[CrossRef]

N. J. Florous, S. K. Varsheney, K. Saitoh, and M. Koshiba, "Thermooptical sensitivity analysis of highly birefringent polarimetric sensing photonic crystal fibers with elliptically elongated veins," IEEE Photon. Technol. Lett. 18, 1663-1665 (2006).
[CrossRef]

Wang, A.

Wang, C.

M. L. Hu, C. Wang, L. Chai, Y. Li, K. V. Dukel'skii, A. V. Khokhlov, V. S. Shevandin, Yu. N. Kondrat'ev, and A. M. Zheltikov, "Birefringence-controlled anti-Stokes line emission from a microstructure fiber," Laser Phys. Lett. 1, 299-302 (2004).
[CrossRef]

Wang, C-y.

M. Hu, C-y. Wang, Y. Li, L. Chai, Y. N. Kondrat'ev, C. Sibilia, and A. M. Zheltikov, "An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field," Appl. Phys. B 79, 805-809 (2004).
[CrossRef]

Wang, D. N.

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, "Design and modeling of a photonic crystal fiber gas sensor," Appl. Opt. 42, 3509-3515 (2003).
[CrossRef] [PubMed]

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, "Evanescent-wave gas sensing using microstructure fiber," Opt. Eng. 41, 8-9 (2002).
[CrossRef]

Werle, P.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, "Near- and mid-infrared laser optical sensor for gas analysis," Opt. Lasers Eng. 37, 101-114 (2002).
[CrossRef]

Westbrook, P.

White, T. P.

Windeler, R.

Windeler, R. S.

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, "Evanescent-wave gas sensing using microstructure fiber," Opt. Eng. 41, 8-9 (2002).
[CrossRef]

Wojcik, J.

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, "Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry," Appl. Phys. B 81, 325-331 (2005).
[CrossRef]

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, "Phase and group modal birefringence of triple-defect photonic crystal fibres," J. Opt. A 7, 763-766 (2005).
[CrossRef]

W. J. Bock, W. Urbanczyk, and J. Wojcik, "Measurements of sensitivity of the single-mode photonic crystal holey fibre to temperature, elongation and hydrostatic pressure," Meas. Sci. Technol. 15, 1496-1500 (2004).
[CrossRef]

Zheltikov, A. M.

M. L. Hu, C. Wang, L. Chai, Y. Li, K. V. Dukel'skii, A. V. Khokhlov, V. S. Shevandin, Yu. N. Kondrat'ev, and A. M. Zheltikov, "Birefringence-controlled anti-Stokes line emission from a microstructure fiber," Laser Phys. Lett. 1, 299-302 (2004).
[CrossRef]

M. Hu, C-y. Wang, Y. Li, L. Chai, Y. N. Kondrat'ev, C. Sibilia, and A. M. Zheltikov, "An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field," Appl. Phys. B 79, 805-809 (2004).
[CrossRef]

Zhi, Wang

Lou Shu-Qin, Wang Zhi, Ren Guo-Bin, and Jian Shui-Sheng, "Propagation properties of an index guiding high birefringence fibre," Chin. Phys. 13, 1493-1499 (2004).
[CrossRef]

Zhiyun, Hou

Zhou Guiyao, Hou Zhiyun, Li Shuguang, and Hou Lantian, "Mathematical model for fabrication of micro-structure fibres," Chin. Phys. Lett. 22, 1162-1165 (2005).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (3)

N. M. Litchinitser and E. Poliakov, "Antiresonant guiding microstructured optical fibers for sensing applications," Appl. Phys. B 81, 347-351 (2005).
[CrossRef]

M. Hu, C-y. Wang, Y. Li, L. Chai, Y. N. Kondrat'ev, C. Sibilia, and A. M. Zheltikov, "An anti-Stokes-shifted doublet of guided modes in a photonic-crystal fiber selectively generated and controlled with orthogonal polarizations of the pump field," Appl. Phys. B 79, 805-809 (2004).
[CrossRef]

T. Nasilowski, T. Martynkien, G. Statkiewicz, M. Szpulak, J. Olszewski, G. Golojuch, W. Urbanczyk, J. Wojcik, P. Mergo, M. Makara, F. Berghmans, and H. Thienpont, "Temperature and pressure sensitivities of the highly birefringent photonic crystal fiber with core asymmetry," Appl. Phys. B 81, 325-331 (2005).
[CrossRef]

Chin. Phys. (1)

Lou Shu-Qin, Wang Zhi, Ren Guo-Bin, and Jian Shui-Sheng, "Propagation properties of an index guiding high birefringence fibre," Chin. Phys. 13, 1493-1499 (2004).
[CrossRef]

Chin. Phys. Lett. (1)

Zhou Guiyao, Hou Zhiyun, Li Shuguang, and Hou Lantian, "Mathematical model for fabrication of micro-structure fibres," Chin. Phys. Lett. 22, 1162-1165 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, "Refractive index sensor based on microstructured fiber Bragg grating," IEEE Photon. Technol. Lett. 17, 1250-1252 (2005).
[CrossRef]

N. J. Florous, S. K. Varsheney, K. Saitoh, and M. Koshiba, "Thermooptical sensitivity analysis of highly birefringent polarimetric sensing photonic crystal fibers with elliptically elongated veins," IEEE Photon. Technol. Lett. 18, 1663-1665 (2006).
[CrossRef]

N. J. Florous, K. Saitoh, S. K. Varsheney, and M. Koshiba, "Fluidic sensors based on photonic crystal fiber gratings: impact of the ambient temperature," IEEE Photon. Technol. Lett. 18, 2206-2208 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A (1)

M. Antkowiak, R. Kotynski, T. Nasilowski, P. Lesiak, J. Wojcik, W. Urbanczyk, F. Berghmans, and H. Thienpont, "Phase and group modal birefringence of triple-defect photonic crystal fibres," J. Opt. A 7, 763-766 (2005).
[CrossRef]

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (1)

M. L. Hu, C. Wang, L. Chai, Y. Li, K. V. Dukel'skii, A. V. Khokhlov, V. S. Shevandin, Yu. N. Kondrat'ev, and A. M. Zheltikov, "Birefringence-controlled anti-Stokes line emission from a microstructure fiber," Laser Phys. Lett. 1, 299-302 (2004).
[CrossRef]

Meas. Sci. Technol. (2)

W. J. Bock, W. Urbanczyk, and J. Wojcik, "Measurements of sensitivity of the single-mode photonic crystal holey fibre to temperature, elongation and hydrostatic pressure," Meas. Sci. Technol. 15, 1496-1500 (2004).
[CrossRef]

J. M. Fini, "Microstructure fibres for optical sensing in gases and liquids," Meas. Sci. Technol. 15, 1120-1128 (2004).
[CrossRef]

Opt. Commun. (2)

G. Statkiewicz, T. Martynkien, and W. Urbanczyk, "Measurements of modal birefringence and polarimetric sensitivity of the birefringent holey fiber to hydrostatic pressure and strain," Opt. Commun. 241, 339-348 (2004).
[CrossRef]

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre," Opt. Commun. 193, 97-104 (2001).
[CrossRef]

Opt. Eng. (1)

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, "Evanescent-wave gas sensing using microstructure fiber," Opt. Eng. 41, 8-9 (2002).
[CrossRef]

Opt. Express (5)

Opt. Lasers Eng. (1)

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, "Near- and mid-infrared laser optical sensor for gas analysis," Opt. Lasers Eng. 37, 101-114 (2002).
[CrossRef]

Opt. Lett. (4)

Sens. Actuators B (1)

G. Stewart, W. Jin, and B. Culshaw, "Prospects for fibre-optic evanescent-field gas sensors using absorption in the near-infrared," Sens. Actuators B 38-39, 42-47 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Cross section of the index-guiding PCF. Here spacing Λ is approximately 1.4   μm and diameter d is 1 .0   μm .

Fig. 2
Fig. 2

Experimental setup used to fill the PCFs with C H 4 and to perform the absorption measurements shown in Fig. 3.

Fig. 3
Fig. 3

Absorption transmission spectrum of C H 4 in the 16 .9   cm long PCF shown in Fig. 1 and recorded with a PbS infrared detector. Resolution of the optical spectrum analyzer is 0 .05   nm .

Fig. 4
Fig. 4

(a) Fundamental mode field distribution of PCFs at 1 .65   μm wavelength and (b) the fraction of power in air holes of PCF as a function of wavelength.

Fig. 5
Fig. 5

Fraction of power in air holes and the confinement loss as a function of spacing Λ. Here wavelength λ = 1.65   μm and ratio d / Λ = 0.5 .

Fig. 6
Fig. 6

Fraction of power in air holes and the confinement loss as a function of spacing Λ. Here wavelength λ = 1.65   μm and air hole diameter d = 0.7.

Fig. 7
Fig. 7

(a) Fraction of power in air holes f as a function of d / Λ , (b) the confinement loss as a function of d / Λ , (c) the effective mode area as a function of d / Λ . Here wavelength λ = 1.65   μm and air hole spacing Λ is from 1.0 to 2 .2   μm .

Fig. 8
Fig. 8

Effective mode area and the fraction of power in air holes as the function of pitch Λ for the PCF missing two layers of air holes in the center.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( λ ) = I 0 ( λ ) exp [ r α m ( λ ) l C ] ,
r = ( n r / n e ) f ,
f = holes ( E x H y E y H x ) d x d y / total ( E x H y E y H x ) d x d y .

Metrics