Abstract

A linear array of n calcite crystals is shown to allow the generation of a high contrast (>10:1) train of 2n high energy (>100  μJ) pulses from a single ultrafast laser pulse. Advantage is taken of the pulse-splitting properties of a single birefringent crystal, where an incident laser pulse can be split into two pulses with orthogonal polarizations and equal intensity, separated temporally in proportion to the thickness of the crystal traversed and the difference in refractive indices of the two optic axes. In the work presented here an array of seven calcite crystals of sequentially doubled thickness is used to produce a train of 128 pulses, each of femtosecond duration. Readily versatile properties such as the number of pulses in the train and variable mark-space ratio are realized from such a setup.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Temkin, "Excitation of an atom by a train of short pulses," J. Opt. Soc. Am. B 10, 830-839 (1993).
    [CrossRef]
  2. S. L. Voronov, I. Kohl, J. B. Madsen, J. Simmons, N. Terry, J. Titensor, Q. Wang, and J. Peatross, "Control of laser high-harmonic generation with counterpropagating light," Phys. Rev. Lett. 87, 133902 (2001).
    [CrossRef] [PubMed]
  3. Z. M. Sheng, K. Mima, J. Zhang, J. Meyer-ter-Vehn, and D. Umstadter, "Acceleration of electrons in the relativistic regime through multi-wave interactions," in 31st EPS Conference on Plasma Physics, Europhysics Conference Abstracts (European Physical Society, 2004), Vol. 28G, paper O-1.29.
  4. R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164 (2000).
    [PubMed]
  5. J. Azaña, R. Slavík, P. Kockaert, L. R. Chen, and S. LaRochelle, "Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings," J. Lightwave Technol. 21, 1490 (2003).
    [CrossRef]
  6. W. Shaik, "Testing of fiber based modulator systems for 'shaped' long pulse generation on Vulcan, Laser Science and Development," Annual Rep. 2004/2005 (Central Laser Facility, 2005), p. 206.
  7. C. W. Sider, "Efficient high-energy pulse-train generation using a 2n-pulse Michelson interferometer," Appl. Opt. 37, 5302 (1998).
  8. http://www.schott.com/optics_devices/english/download/tie29_refractive index_v2.pdf.
  9. http://www.psplc.com/datasheets/casi/CXNonLinearCrystals.pdf.
  10. A. J. Langley, A. J. Langley, E. J. Divall, C. H. Hooker, M. H. R. Hutchinson, A. J.-M. P. Lecot, D. Marshall, M. E. Payne, and P. F. Taday, "The development of a multi-terawatt femtosecond laser facility-Astra, laser science and development," Central Laser Facility Annual Rep. 1998/1999 (Central Laser Facility, 1999), p. 186.
  11. O. E. Martinez, "Design of high-power ultrashort pulse amplifiers by expansion and recompression," IEEE J. Quantum Electron. 23, 1385 (1987).
    [CrossRef]
  12. S. Backus, C. Durfee III, M. Murnane, and H. Kapteyn, "High power ultrafast lasers," Rev. Sci. Instrum. 69, 1207-1223 (1998).
    [CrossRef]

2005

W. Shaik, "Testing of fiber based modulator systems for 'shaped' long pulse generation on Vulcan, Laser Science and Development," Annual Rep. 2004/2005 (Central Laser Facility, 2005), p. 206.

2004

Z. M. Sheng, K. Mima, J. Zhang, J. Meyer-ter-Vehn, and D. Umstadter, "Acceleration of electrons in the relativistic regime through multi-wave interactions," in 31st EPS Conference on Plasma Physics, Europhysics Conference Abstracts (European Physical Society, 2004), Vol. 28G, paper O-1.29.

2003

J. Azaña, R. Slavík, P. Kockaert, L. R. Chen, and S. LaRochelle, "Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings," J. Lightwave Technol. 21, 1490 (2003).
[CrossRef]

2001

S. L. Voronov, I. Kohl, J. B. Madsen, J. Simmons, N. Terry, J. Titensor, Q. Wang, and J. Peatross, "Control of laser high-harmonic generation with counterpropagating light," Phys. Rev. Lett. 87, 133902 (2001).
[CrossRef] [PubMed]

2000

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164 (2000).
[PubMed]

1998

S. Backus, C. Durfee III, M. Murnane, and H. Kapteyn, "High power ultrafast lasers," Rev. Sci. Instrum. 69, 1207-1223 (1998).
[CrossRef]

C. W. Sider, "Efficient high-energy pulse-train generation using a 2n-pulse Michelson interferometer," Appl. Opt. 37, 5302 (1998).

1993

1987

O. E. Martinez, "Design of high-power ultrashort pulse amplifiers by expansion and recompression," IEEE J. Quantum Electron. 23, 1385 (1987).
[CrossRef]

Azaña, J.

J. Azaña, R. Slavík, P. Kockaert, L. R. Chen, and S. LaRochelle, "Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings," J. Lightwave Technol. 21, 1490 (2003).
[CrossRef]

Backus, S.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164 (2000).
[PubMed]

S. Backus, C. Durfee III, M. Murnane, and H. Kapteyn, "High power ultrafast lasers," Rev. Sci. Instrum. 69, 1207-1223 (1998).
[CrossRef]

Bartels, R.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164 (2000).
[PubMed]

Chen, L. R.

J. Azaña, R. Slavík, P. Kockaert, L. R. Chen, and S. LaRochelle, "Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings," J. Lightwave Technol. 21, 1490 (2003).
[CrossRef]

Christov, I. P.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164 (2000).
[PubMed]

Divall, E. J.

A. J. Langley, A. J. Langley, E. J. Divall, C. H. Hooker, M. H. R. Hutchinson, A. J.-M. P. Lecot, D. Marshall, M. E. Payne, and P. F. Taday, "The development of a multi-terawatt femtosecond laser facility-Astra, laser science and development," Central Laser Facility Annual Rep. 1998/1999 (Central Laser Facility, 1999), p. 186.

Durfee, C.

S. Backus, C. Durfee III, M. Murnane, and H. Kapteyn, "High power ultrafast lasers," Rev. Sci. Instrum. 69, 1207-1223 (1998).
[CrossRef]

Hooker, C. H.

A. J. Langley, A. J. Langley, E. J. Divall, C. H. Hooker, M. H. R. Hutchinson, A. J.-M. P. Lecot, D. Marshall, M. E. Payne, and P. F. Taday, "The development of a multi-terawatt femtosecond laser facility-Astra, laser science and development," Central Laser Facility Annual Rep. 1998/1999 (Central Laser Facility, 1999), p. 186.

Hutchinson, M. H. R.

A. J. Langley, A. J. Langley, E. J. Divall, C. H. Hooker, M. H. R. Hutchinson, A. J.-M. P. Lecot, D. Marshall, M. E. Payne, and P. F. Taday, "The development of a multi-terawatt femtosecond laser facility-Astra, laser science and development," Central Laser Facility Annual Rep. 1998/1999 (Central Laser Facility, 1999), p. 186.

Kapteyn, H.

S. Backus, C. Durfee III, M. Murnane, and H. Kapteyn, "High power ultrafast lasers," Rev. Sci. Instrum. 69, 1207-1223 (1998).
[CrossRef]

Kapteyn, H. C.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164 (2000).
[PubMed]

Kockaert, P.

J. Azaña, R. Slavík, P. Kockaert, L. R. Chen, and S. LaRochelle, "Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings," J. Lightwave Technol. 21, 1490 (2003).
[CrossRef]

Kohl, I.

S. L. Voronov, I. Kohl, J. B. Madsen, J. Simmons, N. Terry, J. Titensor, Q. Wang, and J. Peatross, "Control of laser high-harmonic generation with counterpropagating light," Phys. Rev. Lett. 87, 133902 (2001).
[CrossRef] [PubMed]

Langley, A. J.

A. J. Langley, A. J. Langley, E. J. Divall, C. H. Hooker, M. H. R. Hutchinson, A. J.-M. P. Lecot, D. Marshall, M. E. Payne, and P. F. Taday, "The development of a multi-terawatt femtosecond laser facility-Astra, laser science and development," Central Laser Facility Annual Rep. 1998/1999 (Central Laser Facility, 1999), p. 186.

A. J. Langley, A. J. Langley, E. J. Divall, C. H. Hooker, M. H. R. Hutchinson, A. J.-M. P. Lecot, D. Marshall, M. E. Payne, and P. F. Taday, "The development of a multi-terawatt femtosecond laser facility-Astra, laser science and development," Central Laser Facility Annual Rep. 1998/1999 (Central Laser Facility, 1999), p. 186.

LaRochelle, S.

J. Azaña, R. Slavík, P. Kockaert, L. R. Chen, and S. LaRochelle, "Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings," J. Lightwave Technol. 21, 1490 (2003).
[CrossRef]

Lecot, A. J.-M. P.

A. J. Langley, A. J. Langley, E. J. Divall, C. H. Hooker, M. H. R. Hutchinson, A. J.-M. P. Lecot, D. Marshall, M. E. Payne, and P. F. Taday, "The development of a multi-terawatt femtosecond laser facility-Astra, laser science and development," Central Laser Facility Annual Rep. 1998/1999 (Central Laser Facility, 1999), p. 186.

Madsen, J. B.

S. L. Voronov, I. Kohl, J. B. Madsen, J. Simmons, N. Terry, J. Titensor, Q. Wang, and J. Peatross, "Control of laser high-harmonic generation with counterpropagating light," Phys. Rev. Lett. 87, 133902 (2001).
[CrossRef] [PubMed]

Marshall, D.

A. J. Langley, A. J. Langley, E. J. Divall, C. H. Hooker, M. H. R. Hutchinson, A. J.-M. P. Lecot, D. Marshall, M. E. Payne, and P. F. Taday, "The development of a multi-terawatt femtosecond laser facility-Astra, laser science and development," Central Laser Facility Annual Rep. 1998/1999 (Central Laser Facility, 1999), p. 186.

Martinez, O. E.

O. E. Martinez, "Design of high-power ultrashort pulse amplifiers by expansion and recompression," IEEE J. Quantum Electron. 23, 1385 (1987).
[CrossRef]

Meyer-ter-Vehn, J.

Z. M. Sheng, K. Mima, J. Zhang, J. Meyer-ter-Vehn, and D. Umstadter, "Acceleration of electrons in the relativistic regime through multi-wave interactions," in 31st EPS Conference on Plasma Physics, Europhysics Conference Abstracts (European Physical Society, 2004), Vol. 28G, paper O-1.29.

Mima, K.

Z. M. Sheng, K. Mima, J. Zhang, J. Meyer-ter-Vehn, and D. Umstadter, "Acceleration of electrons in the relativistic regime through multi-wave interactions," in 31st EPS Conference on Plasma Physics, Europhysics Conference Abstracts (European Physical Society, 2004), Vol. 28G, paper O-1.29.

Misoguti, L.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164 (2000).
[PubMed]

Murnane, M.

S. Backus, C. Durfee III, M. Murnane, and H. Kapteyn, "High power ultrafast lasers," Rev. Sci. Instrum. 69, 1207-1223 (1998).
[CrossRef]

Murnane, M. M.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164 (2000).
[PubMed]

Payne, M. E.

A. J. Langley, A. J. Langley, E. J. Divall, C. H. Hooker, M. H. R. Hutchinson, A. J.-M. P. Lecot, D. Marshall, M. E. Payne, and P. F. Taday, "The development of a multi-terawatt femtosecond laser facility-Astra, laser science and development," Central Laser Facility Annual Rep. 1998/1999 (Central Laser Facility, 1999), p. 186.

Peatross, J.

S. L. Voronov, I. Kohl, J. B. Madsen, J. Simmons, N. Terry, J. Titensor, Q. Wang, and J. Peatross, "Control of laser high-harmonic generation with counterpropagating light," Phys. Rev. Lett. 87, 133902 (2001).
[CrossRef] [PubMed]

Shaik, W.

W. Shaik, "Testing of fiber based modulator systems for 'shaped' long pulse generation on Vulcan, Laser Science and Development," Annual Rep. 2004/2005 (Central Laser Facility, 2005), p. 206.

Sheng, Z. M.

Z. M. Sheng, K. Mima, J. Zhang, J. Meyer-ter-Vehn, and D. Umstadter, "Acceleration of electrons in the relativistic regime through multi-wave interactions," in 31st EPS Conference on Plasma Physics, Europhysics Conference Abstracts (European Physical Society, 2004), Vol. 28G, paper O-1.29.

Sider, C. W.

C. W. Sider, "Efficient high-energy pulse-train generation using a 2n-pulse Michelson interferometer," Appl. Opt. 37, 5302 (1998).

Simmons, J.

S. L. Voronov, I. Kohl, J. B. Madsen, J. Simmons, N. Terry, J. Titensor, Q. Wang, and J. Peatross, "Control of laser high-harmonic generation with counterpropagating light," Phys. Rev. Lett. 87, 133902 (2001).
[CrossRef] [PubMed]

Slavík, R.

J. Azaña, R. Slavík, P. Kockaert, L. R. Chen, and S. LaRochelle, "Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings," J. Lightwave Technol. 21, 1490 (2003).
[CrossRef]

Taday, P. F.

A. J. Langley, A. J. Langley, E. J. Divall, C. H. Hooker, M. H. R. Hutchinson, A. J.-M. P. Lecot, D. Marshall, M. E. Payne, and P. F. Taday, "The development of a multi-terawatt femtosecond laser facility-Astra, laser science and development," Central Laser Facility Annual Rep. 1998/1999 (Central Laser Facility, 1999), p. 186.

Temkin, R. J.

Terry, N.

S. L. Voronov, I. Kohl, J. B. Madsen, J. Simmons, N. Terry, J. Titensor, Q. Wang, and J. Peatross, "Control of laser high-harmonic generation with counterpropagating light," Phys. Rev. Lett. 87, 133902 (2001).
[CrossRef] [PubMed]

Titensor, J.

S. L. Voronov, I. Kohl, J. B. Madsen, J. Simmons, N. Terry, J. Titensor, Q. Wang, and J. Peatross, "Control of laser high-harmonic generation with counterpropagating light," Phys. Rev. Lett. 87, 133902 (2001).
[CrossRef] [PubMed]

Umstadter, D.

Z. M. Sheng, K. Mima, J. Zhang, J. Meyer-ter-Vehn, and D. Umstadter, "Acceleration of electrons in the relativistic regime through multi-wave interactions," in 31st EPS Conference on Plasma Physics, Europhysics Conference Abstracts (European Physical Society, 2004), Vol. 28G, paper O-1.29.

Vdovin, G.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164 (2000).
[PubMed]

Voronov, S. L.

S. L. Voronov, I. Kohl, J. B. Madsen, J. Simmons, N. Terry, J. Titensor, Q. Wang, and J. Peatross, "Control of laser high-harmonic generation with counterpropagating light," Phys. Rev. Lett. 87, 133902 (2001).
[CrossRef] [PubMed]

Wang, Q.

S. L. Voronov, I. Kohl, J. B. Madsen, J. Simmons, N. Terry, J. Titensor, Q. Wang, and J. Peatross, "Control of laser high-harmonic generation with counterpropagating light," Phys. Rev. Lett. 87, 133902 (2001).
[CrossRef] [PubMed]

Zeek, E.

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164 (2000).
[PubMed]

Zhang, J.

Z. M. Sheng, K. Mima, J. Zhang, J. Meyer-ter-Vehn, and D. Umstadter, "Acceleration of electrons in the relativistic regime through multi-wave interactions," in 31st EPS Conference on Plasma Physics, Europhysics Conference Abstracts (European Physical Society, 2004), Vol. 28G, paper O-1.29.

Appl. Opt.

C. W. Sider, "Efficient high-energy pulse-train generation using a 2n-pulse Michelson interferometer," Appl. Opt. 37, 5302 (1998).

IEEE J. Quantum Electron.

O. E. Martinez, "Design of high-power ultrashort pulse amplifiers by expansion and recompression," IEEE J. Quantum Electron. 23, 1385 (1987).
[CrossRef]

J. Lightwave Technol.

J. Azaña, R. Slavík, P. Kockaert, L. R. Chen, and S. LaRochelle, "Generation of customized ultrahigh repetition rate pulse sequences using superimposed fiber Bragg gratings," J. Lightwave Technol. 21, 1490 (2003).
[CrossRef]

J. Opt. Soc. Am. B

Nature

R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, "Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays," Nature 406, 164 (2000).
[PubMed]

Phys. Rev. Lett.

S. L. Voronov, I. Kohl, J. B. Madsen, J. Simmons, N. Terry, J. Titensor, Q. Wang, and J. Peatross, "Control of laser high-harmonic generation with counterpropagating light," Phys. Rev. Lett. 87, 133902 (2001).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

S. Backus, C. Durfee III, M. Murnane, and H. Kapteyn, "High power ultrafast lasers," Rev. Sci. Instrum. 69, 1207-1223 (1998).
[CrossRef]

Other

Z. M. Sheng, K. Mima, J. Zhang, J. Meyer-ter-Vehn, and D. Umstadter, "Acceleration of electrons in the relativistic regime through multi-wave interactions," in 31st EPS Conference on Plasma Physics, Europhysics Conference Abstracts (European Physical Society, 2004), Vol. 28G, paper O-1.29.

W. Shaik, "Testing of fiber based modulator systems for 'shaped' long pulse generation on Vulcan, Laser Science and Development," Annual Rep. 2004/2005 (Central Laser Facility, 2005), p. 206.

http://www.schott.com/optics_devices/english/download/tie29_refractive index_v2.pdf.

http://www.psplc.com/datasheets/casi/CXNonLinearCrystals.pdf.

A. J. Langley, A. J. Langley, E. J. Divall, C. H. Hooker, M. H. R. Hutchinson, A. J.-M. P. Lecot, D. Marshall, M. E. Payne, and P. F. Taday, "The development of a multi-terawatt femtosecond laser facility-Astra, laser science and development," Central Laser Facility Annual Rep. 1998/1999 (Central Laser Facility, 1999), p. 186.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(Color online) Schematic of the generation of four pulses from two birefringent crystals set at angles such that the ordinary (slow) and extraordinary (fast) axes are bisected by the incident polarization(s). A single pulse (blue online) is incident on Crystal a, splits into two pulses that have traversed the slow ( O a , red online) and fast ( E a , yellow online) axes. The output pulses assume polarization states identical to the orientation of the axis traversed with a temporal separation proportional to the crystal thickness. These two pulses are then incident on Crystal b (twice the thickness of Crystal a) with its axes, E b and O b , again oriented such that they bisected the incident polarizations. The first of the two pulses, E a , splits into two, one slow ( E a O b , red online), and one fast ( E a E b , yellow online). The second pulse also splits into two, one fast ( O a E b , yellow online), and one slow ( O a O b , red online). Given that the thickness of Crystal b is twice that of Crystal a, the temporal delay introduced will also be doubled, which places E a O b temporally behind O a E b , but ahead of O a O b . The output of the two crystal array will therefore be four pulses of equal intensity with the first two pulses in the train orthogonally polarized with respect to the last two. The pulse train can be reduced to a single polarization state by the inclusion of a polarizer that bisects the orthogonal polarizations of the output pulse train (in this case 45°).

Fig. 2
Fig. 2

(Color online) The experimental layout for pulse train generation from a calcite crystal array. The main uncompressed laser beam is apertured at v into two vertically offset beams, the pulse train beam (blue) and the probe beam (red), each 2.5   cm in diameter. The calcite crystals, a–g, are oriented normal to the beam in rotatable mounts with thicknesses given in Table 2. The output polarization of the pulse train is set by the polarizer P1. The energy of the pulse train is controlled by the HWPBSC ensemble consisting of a rotatable half-wave plate and a fixed polarizing beam splitting cube (P2). The increased GVD of the blue beam is compensated for using a block of SF10. The pulse train and probe beams are compressed and cross correlated using a frequency-doubling KDP crystal and photodiode detector. The time delay between the probe and the pulse train is changed by varying the length of the timing slide, T. The entire length (L) of the crystal∕HWPBSC array is < 50   cm .

Fig. 3
Fig. 3

(Color online) Cross correlation trace of the pulse train with the probe beam pulse for the seven crystal configuration described in Section 3. The intensity of the 128 pulse train ( 2 7 ) in the cross correlation trace is observed to fluctuate by approximately + / 30 % .

Fig. 4
Fig. 4

(Color online) Cross correlation traces of the pulse train, with the probe beam pulse for the following crystal configurations: (i) first six crystals only, seventh crystal out, 64 pulses with minimum separation; (ii) first five crystals only, sixth and seventh crystal out, 32 pulses with minimum separation; (iii) first three crystals only, crystals 4–7 out, seventh crystal out, 8 pulses with minimum separation. The high contrast of the pulse train (∼10:1) is readily observed in (ii) and (iii). The length over which the timing slide moves is 1∕3 and 1 / 5 that required for the 128 pulse train, reducing any misalignment error, and hence contrast error, over its travel. Furthermore, the uniformity of the intensity of the pulses is observed over shorter pulse trains as the number of integrated shots is less (less time for long scale ( 1   s ) fluctuation of the laser signal), and the sensitivity due to crystal alignment scales with number of crystals.

Fig. 5
Fig. 5

(Color online) Cross correlation traces of the pulse train with the probe beam pulse performed on the Oxford 125 fs pulse duration Ti:sapphire laser. The following crystal configurations were used:(a) first five crystals in, sixth and seventh crystal out, 32 pulses with minimum separation; (b) first and last crystal out, crystals two through six in, 32 pulses with two times minimum separation; (c) first and second crystal out, crystals three through seven in, 32 pulses with four times minimum separation.

Tables (1)

Tables Icon

Table 1 Temporal Delay, Δ t , for Calcite Crystals of Different Thicknesses x

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ t = x ( 1 V o 1 V e ) ,
F = ( 1 + Δ 1 Δ ) 2 n .

Metrics