Abstract

The digital image correlation method is extended to the study of transient deformations such as the one associated with a rapid growth of cracks in materials. A newly introduced rotating mirror type, multichannel digital high-speed camera is used in the investigation. Details of calibrating the imaging system are first described, and the methodology to estimate and correct inherent misalignments in the optical channels are outlined. A series of benchmark experiments are used to determined the accuracy of the measured displacements. A 2%–6% pixel accuracy in displacement measurements is achieved. Subsequently, the method is used to study crack growth in edge cracked beams subjected to impact loading. Decorated speckle patterns in the crack tip vicinity at rates of 225,000 frames per second are registered. Two sets of images are recorded, one before the impact and another after the impact. Using the image correlation algorithms developed for this work, the entire crack tip deformation history, from the time of impact to complete fracture, is mapped. The crack opening displacements are then analyzed to obtain the history of failure characterization parameter, namely, the dynamic stress intensity factor. The measurements are independently verified successfully by a complementary numerical analysis of the problem.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. A. de Graaf, "Investigation of brittle fracture in steel by means of ultra high speed photography," Appl. Opt. 3(11), 1223-1229 (1964).
    [CrossRef]
  2. J. W. Dally, "Dynamic photo-elastic studies of fracture," Exp. Mech. 19(10), 349-361 (1979).
    [CrossRef]
  3. V. Parameswaran and A. Shukla, "Dynamic fracture of a functionally gradient material having discrete property variation," J. Mater. Sci. 33, 3303-3311 (1998).
    [CrossRef]
  4. H. V. Tippur, "Coherent gradient gensing: a Fourier optics analysis and applications to fracture," Appl. Opt. 31(22), 4429-4439 (1992).
    [CrossRef]
  5. H. V. Tippur, S. Krishnaswamy, and A. J. Rosakis, "A coherent gradient sensor for crack tip measurements: Analysis and experimental results," Int. J. Fract. 48, 193-204 (1991).
    [CrossRef]
  6. M. S. Kirugulige, R. Kitey, and H. V. Tippur, "Dynamic fracture behavior of model sandwich structures with functionally graded core; a feasibility study," Compos. Sci. Technol. 65, 1052-1068 (2004).
    [CrossRef]
  7. M. S. Kirugulige and H. V. Tippur, "Mixed mode dynamic crack growth in functionally graded glass filled epoxy," Exp. Mech. 46, 269-281 (2006).
    [CrossRef]
  8. Z. K. Guo and A. S. Kobayashi, "Dynamic mixed mode fracture of concrete," Int. J. Solids Struct. 32(17), 2591-2607 (1995).
    [CrossRef]
  9. E. B. Flynn, L. C. Bassman, T. P. Smith, Z. Lalji, L. H. Fullerton, T. C. Leung, S. R. Greefield, and A. C. Koskelo, "Three-wavelength ESPI with the Fourier transform method for simulataneous measurement of microstructure scale deformations in three dimensions," Appl. Opt. 45(14), 3218-3225 (2006).
    [CrossRef] [PubMed]
  10. T. Fricke-Begemann, "Three dimensional deformation field measurement with digital speckle correlation," Appl. Opt. 42(34), 6783-6795 (2003).
    [CrossRef] [PubMed]
  11. R. Feiel and P. Wilksch, "High resolution laser speckle correlation for displacement and strain measurement," Appl. Opt. 39(1), 54-60 (2000).
    [CrossRef]
  12. A. J. Moore, D. P. Hand, J. S. Barton, and J. D. C. Jones, "Transient deformation measurement with electronic speckle pattern interferometry and a high speed camera," Appl. Opt. 38(7), 1159-1162 (1999).
    [CrossRef]
  13. G. Pedrini and H. J. Tiziani, "Double pulse electronic speckle interferometry for vibration analysis," Appl. Opt. 33(34), 7857-7863 (1994).
    [CrossRef] [PubMed]
  14. D. E. Duffy, "Moiré gauging of in-plane displacement using double aperture imaging," Appl. Opt. 11(8), 1778-1781 (1972).
    [CrossRef] [PubMed]
  15. R. S. Sirohi, J. Burke, H. Helmers, and K. D. Hinsch, "Spatial phase shifting or pure in-plane displacement and displacement-derivative measurements in ESPI," Appl. Opt. 36(23), 5787-5791 (1997).
    [CrossRef] [PubMed]
  16. Y. J. Chao, P. F. Luo, and J. F. Kalthoff, "An experimental study of the deformation fields around a propagating crack tip," Exp. Mech. 38(2), 79-85 (1998).
    [CrossRef]
  17. Proceedings of the 2006 SEM Annual Conference and Exposition on Experimental and Applied Mechanics, cd-rom, June 4-7, 2006 (Saint Louis, Missouri).
    [PubMed]
  18. Proceedings of the International Society for Optical Engineering, cd-rom, Vols. 5580 and 6302.
    [PubMed]
  19. D. Zhang, C. D. Eggleton, and D. D. Arola, "Evaluating the mechanical behavior of arterial tissue using digital image correlation," Exp. Mech. 42(4), 409-416 (2002).
    [CrossRef]
  20. C. C. B. Wang, J. M. Deng, G. A. Ateshian, and C. T. Hung, "An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression," J. Biomed. Eng. 24, 557-567 (2002).
  21. E. B. Li, A. K. Tieu, and W. Y. D. Yuen, "Application of digital image correlation technique to dynamic measurement of the velocity filed in the deformation zone in cold rolling," Opt. Lasers Eng. 39, 479-488 (2003).
    [CrossRef]
  22. J. N. Perie, S. Calloch, C. Cluszel, and F. Hild, "Analysis of multiaxial test on a C/C composite by using digital image correlation and a damage model," Exp. Mech. 42(3), 318-328 (2002).
    [CrossRef]
  23. W. H. Peters and W. F. Ranson, "Digital image techniques in experimental stress analysis," Opt. Eng. (Bellingham) 21, 427-431 (1982).
  24. M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeil, "Determination of displacements using an improved digital image correlation method," Image Vis. Comput. 1(3), 133-139 (1983).
    [CrossRef]
  25. H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, "Digital image correlation using Newton-Raphson method of partial differential correction," Exp. Mech. 29, 261-267 (1989).
    [CrossRef]
  26. D. J. Chen, F. P. Chiang, Y. S. Tan, and H. S. Don, "Digital speckle-displacement measurement using a complex spectrum method," Appl. Opt. 32(11), 1939-1849 (1993).
    [CrossRef]
  27. P. F. Lou, Y. J. Chao, M. A. Sutton, and W. H. Peters, "Accurate measurement of three-dimensional deoformations in deformable and rigid bodies using computer vision," Exp. Mech. 33(3), 123-132 (1993).
    [CrossRef]
  28. matlab 7.0, The MathWorks, Incorporated, http://www.mathworks.com, 2006.
  29. C. G. Broyden, "The convergence of a class of double-rank minimization algorithms," J. Inst. Math. Appl. , 76-90 (1970).
    [CrossRef]
  30. C. H. Reinsch, "Smoothing by spline functions," Numer. Math. 10, 177-183 (1967).
    [CrossRef]
  31. P. Craven and G. Wahba, "Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross validation," Numer. Math. 31, 377-405 (1979).
    [CrossRef]
  32. R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using matlab (Prentice Hall, 2004), 1st edition.
  33. R. J. Butcher, C.-E. Rousseau, and H. V. Tippur, "A functionally graded particulate composite: Preparation, measurements and failure analysis," Acta Mater. 47(1), 259-268 (1998).
    [CrossRef]
  34. M. J. Maleski, M. S. Kirugulige, and H. V. Tippur, "A method for measuring mode-I crack tip constraint under static and dynamic loading conditions," Exp. Mech. 44(5), 522-532 (2004).
    [CrossRef]
  35. H. M. Westergaard, "Bearing pressure and cracks," J. Appl. Mech. 6, A49-A53 (1939).
  36. T. Nishioka and S. N. Atluri, "Path independent integrals, energy release rates, and general solutions of near-tip fields in mixed-mode dynamic fracture mechanics," Eng. Fract. Mech. 18(1), 1-22 (1983).
    [CrossRef]
  37. J. W. Dally and W. F. Riley, Experimental Stress Analysis, 4th ed., College House Enterprises, LLC (2005).
  38. K. Jayadevan, R. Narasimhan, T. Ramamurthy, and B. Dattaguru, "A numerical study in dynamically loaded fracture specimens," Int. J. Solids Struct. 38(5), 4987-5005 (2001).
    [CrossRef]

2006 (3)

Proceedings of the 2006 SEM Annual Conference and Exposition on Experimental and Applied Mechanics, cd-rom, June 4-7, 2006 (Saint Louis, Missouri).
[PubMed]

M. S. Kirugulige and H. V. Tippur, "Mixed mode dynamic crack growth in functionally graded glass filled epoxy," Exp. Mech. 46, 269-281 (2006).
[CrossRef]

E. B. Flynn, L. C. Bassman, T. P. Smith, Z. Lalji, L. H. Fullerton, T. C. Leung, S. R. Greefield, and A. C. Koskelo, "Three-wavelength ESPI with the Fourier transform method for simulataneous measurement of microstructure scale deformations in three dimensions," Appl. Opt. 45(14), 3218-3225 (2006).
[CrossRef] [PubMed]

2005 (1)

J. W. Dally and W. F. Riley, Experimental Stress Analysis, 4th ed., College House Enterprises, LLC (2005).

2004 (3)

M. S. Kirugulige, R. Kitey, and H. V. Tippur, "Dynamic fracture behavior of model sandwich structures with functionally graded core; a feasibility study," Compos. Sci. Technol. 65, 1052-1068 (2004).
[CrossRef]

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using matlab (Prentice Hall, 2004), 1st edition.

M. J. Maleski, M. S. Kirugulige, and H. V. Tippur, "A method for measuring mode-I crack tip constraint under static and dynamic loading conditions," Exp. Mech. 44(5), 522-532 (2004).
[CrossRef]

2003 (2)

E. B. Li, A. K. Tieu, and W. Y. D. Yuen, "Application of digital image correlation technique to dynamic measurement of the velocity filed in the deformation zone in cold rolling," Opt. Lasers Eng. 39, 479-488 (2003).
[CrossRef]

T. Fricke-Begemann, "Three dimensional deformation field measurement with digital speckle correlation," Appl. Opt. 42(34), 6783-6795 (2003).
[CrossRef] [PubMed]

2002 (3)

J. N. Perie, S. Calloch, C. Cluszel, and F. Hild, "Analysis of multiaxial test on a C/C composite by using digital image correlation and a damage model," Exp. Mech. 42(3), 318-328 (2002).
[CrossRef]

D. Zhang, C. D. Eggleton, and D. D. Arola, "Evaluating the mechanical behavior of arterial tissue using digital image correlation," Exp. Mech. 42(4), 409-416 (2002).
[CrossRef]

C. C. B. Wang, J. M. Deng, G. A. Ateshian, and C. T. Hung, "An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression," J. Biomed. Eng. 24, 557-567 (2002).

2001 (1)

K. Jayadevan, R. Narasimhan, T. Ramamurthy, and B. Dattaguru, "A numerical study in dynamically loaded fracture specimens," Int. J. Solids Struct. 38(5), 4987-5005 (2001).
[CrossRef]

2000 (1)

1999 (1)

A. J. Moore, D. P. Hand, J. S. Barton, and J. D. C. Jones, "Transient deformation measurement with electronic speckle pattern interferometry and a high speed camera," Appl. Opt. 38(7), 1159-1162 (1999).
[CrossRef]

1998 (3)

V. Parameswaran and A. Shukla, "Dynamic fracture of a functionally gradient material having discrete property variation," J. Mater. Sci. 33, 3303-3311 (1998).
[CrossRef]

R. J. Butcher, C.-E. Rousseau, and H. V. Tippur, "A functionally graded particulate composite: Preparation, measurements and failure analysis," Acta Mater. 47(1), 259-268 (1998).
[CrossRef]

Y. J. Chao, P. F. Luo, and J. F. Kalthoff, "An experimental study of the deformation fields around a propagating crack tip," Exp. Mech. 38(2), 79-85 (1998).
[CrossRef]

1997 (1)

1995 (1)

Z. K. Guo and A. S. Kobayashi, "Dynamic mixed mode fracture of concrete," Int. J. Solids Struct. 32(17), 2591-2607 (1995).
[CrossRef]

1994 (1)

1993 (2)

D. J. Chen, F. P. Chiang, Y. S. Tan, and H. S. Don, "Digital speckle-displacement measurement using a complex spectrum method," Appl. Opt. 32(11), 1939-1849 (1993).
[CrossRef]

P. F. Lou, Y. J. Chao, M. A. Sutton, and W. H. Peters, "Accurate measurement of three-dimensional deoformations in deformable and rigid bodies using computer vision," Exp. Mech. 33(3), 123-132 (1993).
[CrossRef]

1992 (1)

H. V. Tippur, "Coherent gradient gensing: a Fourier optics analysis and applications to fracture," Appl. Opt. 31(22), 4429-4439 (1992).
[CrossRef]

1991 (1)

H. V. Tippur, S. Krishnaswamy, and A. J. Rosakis, "A coherent gradient sensor for crack tip measurements: Analysis and experimental results," Int. J. Fract. 48, 193-204 (1991).
[CrossRef]

1989 (1)

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, "Digital image correlation using Newton-Raphson method of partial differential correction," Exp. Mech. 29, 261-267 (1989).
[CrossRef]

1983 (2)

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeil, "Determination of displacements using an improved digital image correlation method," Image Vis. Comput. 1(3), 133-139 (1983).
[CrossRef]

T. Nishioka and S. N. Atluri, "Path independent integrals, energy release rates, and general solutions of near-tip fields in mixed-mode dynamic fracture mechanics," Eng. Fract. Mech. 18(1), 1-22 (1983).
[CrossRef]

1982 (1)

W. H. Peters and W. F. Ranson, "Digital image techniques in experimental stress analysis," Opt. Eng. (Bellingham) 21, 427-431 (1982).

1979 (2)

P. Craven and G. Wahba, "Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross validation," Numer. Math. 31, 377-405 (1979).
[CrossRef]

J. W. Dally, "Dynamic photo-elastic studies of fracture," Exp. Mech. 19(10), 349-361 (1979).
[CrossRef]

1972 (1)

1970 (1)

C. G. Broyden, "The convergence of a class of double-rank minimization algorithms," J. Inst. Math. Appl. , 76-90 (1970).
[CrossRef]

1967 (1)

C. H. Reinsch, "Smoothing by spline functions," Numer. Math. 10, 177-183 (1967).
[CrossRef]

1964 (1)

1939 (1)

H. M. Westergaard, "Bearing pressure and cracks," J. Appl. Mech. 6, A49-A53 (1939).

Arola, D. D.

D. Zhang, C. D. Eggleton, and D. D. Arola, "Evaluating the mechanical behavior of arterial tissue using digital image correlation," Exp. Mech. 42(4), 409-416 (2002).
[CrossRef]

Ateshian, G. A.

C. C. B. Wang, J. M. Deng, G. A. Ateshian, and C. T. Hung, "An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression," J. Biomed. Eng. 24, 557-567 (2002).

Atluri, S. N.

T. Nishioka and S. N. Atluri, "Path independent integrals, energy release rates, and general solutions of near-tip fields in mixed-mode dynamic fracture mechanics," Eng. Fract. Mech. 18(1), 1-22 (1983).
[CrossRef]

Barton, J. S.

A. J. Moore, D. P. Hand, J. S. Barton, and J. D. C. Jones, "Transient deformation measurement with electronic speckle pattern interferometry and a high speed camera," Appl. Opt. 38(7), 1159-1162 (1999).
[CrossRef]

Bassman, L. C.

Broyden, C. G.

C. G. Broyden, "The convergence of a class of double-rank minimization algorithms," J. Inst. Math. Appl. , 76-90 (1970).
[CrossRef]

Bruck, H. A.

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, "Digital image correlation using Newton-Raphson method of partial differential correction," Exp. Mech. 29, 261-267 (1989).
[CrossRef]

Burke, J.

Butcher, R. J.

R. J. Butcher, C.-E. Rousseau, and H. V. Tippur, "A functionally graded particulate composite: Preparation, measurements and failure analysis," Acta Mater. 47(1), 259-268 (1998).
[CrossRef]

Calloch, S.

J. N. Perie, S. Calloch, C. Cluszel, and F. Hild, "Analysis of multiaxial test on a C/C composite by using digital image correlation and a damage model," Exp. Mech. 42(3), 318-328 (2002).
[CrossRef]

Chao, Y. J.

Y. J. Chao, P. F. Luo, and J. F. Kalthoff, "An experimental study of the deformation fields around a propagating crack tip," Exp. Mech. 38(2), 79-85 (1998).
[CrossRef]

P. F. Lou, Y. J. Chao, M. A. Sutton, and W. H. Peters, "Accurate measurement of three-dimensional deoformations in deformable and rigid bodies using computer vision," Exp. Mech. 33(3), 123-132 (1993).
[CrossRef]

Chen, D. J.

D. J. Chen, F. P. Chiang, Y. S. Tan, and H. S. Don, "Digital speckle-displacement measurement using a complex spectrum method," Appl. Opt. 32(11), 1939-1849 (1993).
[CrossRef]

Chiang, F. P.

D. J. Chen, F. P. Chiang, Y. S. Tan, and H. S. Don, "Digital speckle-displacement measurement using a complex spectrum method," Appl. Opt. 32(11), 1939-1849 (1993).
[CrossRef]

Cluszel, C.

J. N. Perie, S. Calloch, C. Cluszel, and F. Hild, "Analysis of multiaxial test on a C/C composite by using digital image correlation and a damage model," Exp. Mech. 42(3), 318-328 (2002).
[CrossRef]

Craven, P.

P. Craven and G. Wahba, "Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross validation," Numer. Math. 31, 377-405 (1979).
[CrossRef]

Dally, J. W.

J. W. Dally and W. F. Riley, Experimental Stress Analysis, 4th ed., College House Enterprises, LLC (2005).

J. W. Dally, "Dynamic photo-elastic studies of fracture," Exp. Mech. 19(10), 349-361 (1979).
[CrossRef]

Dattaguru, B.

K. Jayadevan, R. Narasimhan, T. Ramamurthy, and B. Dattaguru, "A numerical study in dynamically loaded fracture specimens," Int. J. Solids Struct. 38(5), 4987-5005 (2001).
[CrossRef]

de Graaf, J. G. A.

Deng, J. M.

C. C. B. Wang, J. M. Deng, G. A. Ateshian, and C. T. Hung, "An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression," J. Biomed. Eng. 24, 557-567 (2002).

Don, H. S.

D. J. Chen, F. P. Chiang, Y. S. Tan, and H. S. Don, "Digital speckle-displacement measurement using a complex spectrum method," Appl. Opt. 32(11), 1939-1849 (1993).
[CrossRef]

Duffy, D. E.

Eddins, S. L.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using matlab (Prentice Hall, 2004), 1st edition.

Eggleton, C. D.

D. Zhang, C. D. Eggleton, and D. D. Arola, "Evaluating the mechanical behavior of arterial tissue using digital image correlation," Exp. Mech. 42(4), 409-416 (2002).
[CrossRef]

Feiel, R.

Flynn, E. B.

Fricke-Begemann, T.

Fullerton, L. H.

Gonzalez, R. C.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using matlab (Prentice Hall, 2004), 1st edition.

Greefield, S. R.

Guo, Z. K.

Z. K. Guo and A. S. Kobayashi, "Dynamic mixed mode fracture of concrete," Int. J. Solids Struct. 32(17), 2591-2607 (1995).
[CrossRef]

Hand, D. P.

A. J. Moore, D. P. Hand, J. S. Barton, and J. D. C. Jones, "Transient deformation measurement with electronic speckle pattern interferometry and a high speed camera," Appl. Opt. 38(7), 1159-1162 (1999).
[CrossRef]

Helmers, H.

Hild, F.

J. N. Perie, S. Calloch, C. Cluszel, and F. Hild, "Analysis of multiaxial test on a C/C composite by using digital image correlation and a damage model," Exp. Mech. 42(3), 318-328 (2002).
[CrossRef]

Hinsch, K. D.

Hung, C. T.

C. C. B. Wang, J. M. Deng, G. A. Ateshian, and C. T. Hung, "An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression," J. Biomed. Eng. 24, 557-567 (2002).

Jayadevan, K.

K. Jayadevan, R. Narasimhan, T. Ramamurthy, and B. Dattaguru, "A numerical study in dynamically loaded fracture specimens," Int. J. Solids Struct. 38(5), 4987-5005 (2001).
[CrossRef]

Jones, J. D. C.

A. J. Moore, D. P. Hand, J. S. Barton, and J. D. C. Jones, "Transient deformation measurement with electronic speckle pattern interferometry and a high speed camera," Appl. Opt. 38(7), 1159-1162 (1999).
[CrossRef]

Kalthoff, J. F.

Y. J. Chao, P. F. Luo, and J. F. Kalthoff, "An experimental study of the deformation fields around a propagating crack tip," Exp. Mech. 38(2), 79-85 (1998).
[CrossRef]

Kirugulige, M. S.

M. S. Kirugulige and H. V. Tippur, "Mixed mode dynamic crack growth in functionally graded glass filled epoxy," Exp. Mech. 46, 269-281 (2006).
[CrossRef]

M. S. Kirugulige, R. Kitey, and H. V. Tippur, "Dynamic fracture behavior of model sandwich structures with functionally graded core; a feasibility study," Compos. Sci. Technol. 65, 1052-1068 (2004).
[CrossRef]

M. J. Maleski, M. S. Kirugulige, and H. V. Tippur, "A method for measuring mode-I crack tip constraint under static and dynamic loading conditions," Exp. Mech. 44(5), 522-532 (2004).
[CrossRef]

Kitey, R.

M. S. Kirugulige, R. Kitey, and H. V. Tippur, "Dynamic fracture behavior of model sandwich structures with functionally graded core; a feasibility study," Compos. Sci. Technol. 65, 1052-1068 (2004).
[CrossRef]

Kobayashi, A. S.

Z. K. Guo and A. S. Kobayashi, "Dynamic mixed mode fracture of concrete," Int. J. Solids Struct. 32(17), 2591-2607 (1995).
[CrossRef]

Koskelo, A. C.

Krishnaswamy, S.

H. V. Tippur, S. Krishnaswamy, and A. J. Rosakis, "A coherent gradient sensor for crack tip measurements: Analysis and experimental results," Int. J. Fract. 48, 193-204 (1991).
[CrossRef]

Lalji, Z.

Leung, T. C.

Li, E. B.

E. B. Li, A. K. Tieu, and W. Y. D. Yuen, "Application of digital image correlation technique to dynamic measurement of the velocity filed in the deformation zone in cold rolling," Opt. Lasers Eng. 39, 479-488 (2003).
[CrossRef]

Lou, P. F.

P. F. Lou, Y. J. Chao, M. A. Sutton, and W. H. Peters, "Accurate measurement of three-dimensional deoformations in deformable and rigid bodies using computer vision," Exp. Mech. 33(3), 123-132 (1993).
[CrossRef]

Luo, P. F.

Y. J. Chao, P. F. Luo, and J. F. Kalthoff, "An experimental study of the deformation fields around a propagating crack tip," Exp. Mech. 38(2), 79-85 (1998).
[CrossRef]

Maleski, M. J.

M. J. Maleski, M. S. Kirugulige, and H. V. Tippur, "A method for measuring mode-I crack tip constraint under static and dynamic loading conditions," Exp. Mech. 44(5), 522-532 (2004).
[CrossRef]

McNeil, S. R.

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeil, "Determination of displacements using an improved digital image correlation method," Image Vis. Comput. 1(3), 133-139 (1983).
[CrossRef]

McNeill, S. R.

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, "Digital image correlation using Newton-Raphson method of partial differential correction," Exp. Mech. 29, 261-267 (1989).
[CrossRef]

Moore, A. J.

A. J. Moore, D. P. Hand, J. S. Barton, and J. D. C. Jones, "Transient deformation measurement with electronic speckle pattern interferometry and a high speed camera," Appl. Opt. 38(7), 1159-1162 (1999).
[CrossRef]

Narasimhan, R.

K. Jayadevan, R. Narasimhan, T. Ramamurthy, and B. Dattaguru, "A numerical study in dynamically loaded fracture specimens," Int. J. Solids Struct. 38(5), 4987-5005 (2001).
[CrossRef]

Nishioka, T.

T. Nishioka and S. N. Atluri, "Path independent integrals, energy release rates, and general solutions of near-tip fields in mixed-mode dynamic fracture mechanics," Eng. Fract. Mech. 18(1), 1-22 (1983).
[CrossRef]

Parameswaran, V.

V. Parameswaran and A. Shukla, "Dynamic fracture of a functionally gradient material having discrete property variation," J. Mater. Sci. 33, 3303-3311 (1998).
[CrossRef]

Pedrini, G.

Perie, J. N.

J. N. Perie, S. Calloch, C. Cluszel, and F. Hild, "Analysis of multiaxial test on a C/C composite by using digital image correlation and a damage model," Exp. Mech. 42(3), 318-328 (2002).
[CrossRef]

Peters, W. H.

P. F. Lou, Y. J. Chao, M. A. Sutton, and W. H. Peters, "Accurate measurement of three-dimensional deoformations in deformable and rigid bodies using computer vision," Exp. Mech. 33(3), 123-132 (1993).
[CrossRef]

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, "Digital image correlation using Newton-Raphson method of partial differential correction," Exp. Mech. 29, 261-267 (1989).
[CrossRef]

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeil, "Determination of displacements using an improved digital image correlation method," Image Vis. Comput. 1(3), 133-139 (1983).
[CrossRef]

W. H. Peters and W. F. Ranson, "Digital image techniques in experimental stress analysis," Opt. Eng. (Bellingham) 21, 427-431 (1982).

Ramamurthy, T.

K. Jayadevan, R. Narasimhan, T. Ramamurthy, and B. Dattaguru, "A numerical study in dynamically loaded fracture specimens," Int. J. Solids Struct. 38(5), 4987-5005 (2001).
[CrossRef]

Ranson, W. F.

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeil, "Determination of displacements using an improved digital image correlation method," Image Vis. Comput. 1(3), 133-139 (1983).
[CrossRef]

W. H. Peters and W. F. Ranson, "Digital image techniques in experimental stress analysis," Opt. Eng. (Bellingham) 21, 427-431 (1982).

Reinsch, C. H.

C. H. Reinsch, "Smoothing by spline functions," Numer. Math. 10, 177-183 (1967).
[CrossRef]

Riley, W. F.

J. W. Dally and W. F. Riley, Experimental Stress Analysis, 4th ed., College House Enterprises, LLC (2005).

Rosakis, A. J.

H. V. Tippur, S. Krishnaswamy, and A. J. Rosakis, "A coherent gradient sensor for crack tip measurements: Analysis and experimental results," Int. J. Fract. 48, 193-204 (1991).
[CrossRef]

Rousseau, C.-E.

R. J. Butcher, C.-E. Rousseau, and H. V. Tippur, "A functionally graded particulate composite: Preparation, measurements and failure analysis," Acta Mater. 47(1), 259-268 (1998).
[CrossRef]

Shukla, A.

V. Parameswaran and A. Shukla, "Dynamic fracture of a functionally gradient material having discrete property variation," J. Mater. Sci. 33, 3303-3311 (1998).
[CrossRef]

Sirohi, R. S.

Smith, T. P.

Sutton, M. A.

P. F. Lou, Y. J. Chao, M. A. Sutton, and W. H. Peters, "Accurate measurement of three-dimensional deoformations in deformable and rigid bodies using computer vision," Exp. Mech. 33(3), 123-132 (1993).
[CrossRef]

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, "Digital image correlation using Newton-Raphson method of partial differential correction," Exp. Mech. 29, 261-267 (1989).
[CrossRef]

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeil, "Determination of displacements using an improved digital image correlation method," Image Vis. Comput. 1(3), 133-139 (1983).
[CrossRef]

Tan, Y. S.

D. J. Chen, F. P. Chiang, Y. S. Tan, and H. S. Don, "Digital speckle-displacement measurement using a complex spectrum method," Appl. Opt. 32(11), 1939-1849 (1993).
[CrossRef]

Tieu, A. K.

E. B. Li, A. K. Tieu, and W. Y. D. Yuen, "Application of digital image correlation technique to dynamic measurement of the velocity filed in the deformation zone in cold rolling," Opt. Lasers Eng. 39, 479-488 (2003).
[CrossRef]

Tippur, H. V.

M. S. Kirugulige and H. V. Tippur, "Mixed mode dynamic crack growth in functionally graded glass filled epoxy," Exp. Mech. 46, 269-281 (2006).
[CrossRef]

M. S. Kirugulige, R. Kitey, and H. V. Tippur, "Dynamic fracture behavior of model sandwich structures with functionally graded core; a feasibility study," Compos. Sci. Technol. 65, 1052-1068 (2004).
[CrossRef]

M. J. Maleski, M. S. Kirugulige, and H. V. Tippur, "A method for measuring mode-I crack tip constraint under static and dynamic loading conditions," Exp. Mech. 44(5), 522-532 (2004).
[CrossRef]

R. J. Butcher, C.-E. Rousseau, and H. V. Tippur, "A functionally graded particulate composite: Preparation, measurements and failure analysis," Acta Mater. 47(1), 259-268 (1998).
[CrossRef]

H. V. Tippur, "Coherent gradient gensing: a Fourier optics analysis and applications to fracture," Appl. Opt. 31(22), 4429-4439 (1992).
[CrossRef]

H. V. Tippur, S. Krishnaswamy, and A. J. Rosakis, "A coherent gradient sensor for crack tip measurements: Analysis and experimental results," Int. J. Fract. 48, 193-204 (1991).
[CrossRef]

Tiziani, H. J.

Wahba, G.

P. Craven and G. Wahba, "Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross validation," Numer. Math. 31, 377-405 (1979).
[CrossRef]

Wang, C. C. B.

C. C. B. Wang, J. M. Deng, G. A. Ateshian, and C. T. Hung, "An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression," J. Biomed. Eng. 24, 557-567 (2002).

Westergaard, H. M.

H. M. Westergaard, "Bearing pressure and cracks," J. Appl. Mech. 6, A49-A53 (1939).

Wilksch, P.

Wolters, W. J.

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeil, "Determination of displacements using an improved digital image correlation method," Image Vis. Comput. 1(3), 133-139 (1983).
[CrossRef]

Woods, R. E.

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using matlab (Prentice Hall, 2004), 1st edition.

Yuen, W. Y. D.

E. B. Li, A. K. Tieu, and W. Y. D. Yuen, "Application of digital image correlation technique to dynamic measurement of the velocity filed in the deformation zone in cold rolling," Opt. Lasers Eng. 39, 479-488 (2003).
[CrossRef]

Zhang, D.

D. Zhang, C. D. Eggleton, and D. D. Arola, "Evaluating the mechanical behavior of arterial tissue using digital image correlation," Exp. Mech. 42(4), 409-416 (2002).
[CrossRef]

Acta Mater. (1)

R. J. Butcher, C.-E. Rousseau, and H. V. Tippur, "A functionally graded particulate composite: Preparation, measurements and failure analysis," Acta Mater. 47(1), 259-268 (1998).
[CrossRef]

Appl. Opt. (10)

D. J. Chen, F. P. Chiang, Y. S. Tan, and H. S. Don, "Digital speckle-displacement measurement using a complex spectrum method," Appl. Opt. 32(11), 1939-1849 (1993).
[CrossRef]

H. V. Tippur, "Coherent gradient gensing: a Fourier optics analysis and applications to fracture," Appl. Opt. 31(22), 4429-4439 (1992).
[CrossRef]

A. J. Moore, D. P. Hand, J. S. Barton, and J. D. C. Jones, "Transient deformation measurement with electronic speckle pattern interferometry and a high speed camera," Appl. Opt. 38(7), 1159-1162 (1999).
[CrossRef]

J. G. A. de Graaf, "Investigation of brittle fracture in steel by means of ultra high speed photography," Appl. Opt. 3(11), 1223-1229 (1964).
[CrossRef]

D. E. Duffy, "Moiré gauging of in-plane displacement using double aperture imaging," Appl. Opt. 11(8), 1778-1781 (1972).
[CrossRef] [PubMed]

G. Pedrini and H. J. Tiziani, "Double pulse electronic speckle interferometry for vibration analysis," Appl. Opt. 33(34), 7857-7863 (1994).
[CrossRef] [PubMed]

R. S. Sirohi, J. Burke, H. Helmers, and K. D. Hinsch, "Spatial phase shifting or pure in-plane displacement and displacement-derivative measurements in ESPI," Appl. Opt. 36(23), 5787-5791 (1997).
[CrossRef] [PubMed]

R. Feiel and P. Wilksch, "High resolution laser speckle correlation for displacement and strain measurement," Appl. Opt. 39(1), 54-60 (2000).
[CrossRef]

T. Fricke-Begemann, "Three dimensional deformation field measurement with digital speckle correlation," Appl. Opt. 42(34), 6783-6795 (2003).
[CrossRef] [PubMed]

E. B. Flynn, L. C. Bassman, T. P. Smith, Z. Lalji, L. H. Fullerton, T. C. Leung, S. R. Greefield, and A. C. Koskelo, "Three-wavelength ESPI with the Fourier transform method for simulataneous measurement of microstructure scale deformations in three dimensions," Appl. Opt. 45(14), 3218-3225 (2006).
[CrossRef] [PubMed]

Compos. Sci. Technol. (1)

M. S. Kirugulige, R. Kitey, and H. V. Tippur, "Dynamic fracture behavior of model sandwich structures with functionally graded core; a feasibility study," Compos. Sci. Technol. 65, 1052-1068 (2004).
[CrossRef]

Eng. Fract. Mech. (1)

T. Nishioka and S. N. Atluri, "Path independent integrals, energy release rates, and general solutions of near-tip fields in mixed-mode dynamic fracture mechanics," Eng. Fract. Mech. 18(1), 1-22 (1983).
[CrossRef]

Exp. Mech. (8)

J. W. Dally, "Dynamic photo-elastic studies of fracture," Exp. Mech. 19(10), 349-361 (1979).
[CrossRef]

M. S. Kirugulige and H. V. Tippur, "Mixed mode dynamic crack growth in functionally graded glass filled epoxy," Exp. Mech. 46, 269-281 (2006).
[CrossRef]

P. F. Lou, Y. J. Chao, M. A. Sutton, and W. H. Peters, "Accurate measurement of three-dimensional deoformations in deformable and rigid bodies using computer vision," Exp. Mech. 33(3), 123-132 (1993).
[CrossRef]

M. J. Maleski, M. S. Kirugulige, and H. V. Tippur, "A method for measuring mode-I crack tip constraint under static and dynamic loading conditions," Exp. Mech. 44(5), 522-532 (2004).
[CrossRef]

Y. J. Chao, P. F. Luo, and J. F. Kalthoff, "An experimental study of the deformation fields around a propagating crack tip," Exp. Mech. 38(2), 79-85 (1998).
[CrossRef]

D. Zhang, C. D. Eggleton, and D. D. Arola, "Evaluating the mechanical behavior of arterial tissue using digital image correlation," Exp. Mech. 42(4), 409-416 (2002).
[CrossRef]

J. N. Perie, S. Calloch, C. Cluszel, and F. Hild, "Analysis of multiaxial test on a C/C composite by using digital image correlation and a damage model," Exp. Mech. 42(3), 318-328 (2002).
[CrossRef]

H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, "Digital image correlation using Newton-Raphson method of partial differential correction," Exp. Mech. 29, 261-267 (1989).
[CrossRef]

Image Vis. Comput. (1)

M. A. Sutton, W. J. Wolters, W. H. Peters, W. F. Ranson, and S. R. McNeil, "Determination of displacements using an improved digital image correlation method," Image Vis. Comput. 1(3), 133-139 (1983).
[CrossRef]

Int. J. Fract. (1)

H. V. Tippur, S. Krishnaswamy, and A. J. Rosakis, "A coherent gradient sensor for crack tip measurements: Analysis and experimental results," Int. J. Fract. 48, 193-204 (1991).
[CrossRef]

Int. J. Solids Struct. (2)

Z. K. Guo and A. S. Kobayashi, "Dynamic mixed mode fracture of concrete," Int. J. Solids Struct. 32(17), 2591-2607 (1995).
[CrossRef]

K. Jayadevan, R. Narasimhan, T. Ramamurthy, and B. Dattaguru, "A numerical study in dynamically loaded fracture specimens," Int. J. Solids Struct. 38(5), 4987-5005 (2001).
[CrossRef]

J. Appl. Mech. (1)

H. M. Westergaard, "Bearing pressure and cracks," J. Appl. Mech. 6, A49-A53 (1939).

J. Biomed. Eng. (1)

C. C. B. Wang, J. M. Deng, G. A. Ateshian, and C. T. Hung, "An automated approach for direct measurement of two-dimensional strain distributions within articular cartilage under unconfined compression," J. Biomed. Eng. 24, 557-567 (2002).

J. Inst. Math. Appl. (1)

C. G. Broyden, "The convergence of a class of double-rank minimization algorithms," J. Inst. Math. Appl. , 76-90 (1970).
[CrossRef]

J. Mater. Sci. (1)

V. Parameswaran and A. Shukla, "Dynamic fracture of a functionally gradient material having discrete property variation," J. Mater. Sci. 33, 3303-3311 (1998).
[CrossRef]

Numer. Math. (2)

C. H. Reinsch, "Smoothing by spline functions," Numer. Math. 10, 177-183 (1967).
[CrossRef]

P. Craven and G. Wahba, "Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross validation," Numer. Math. 31, 377-405 (1979).
[CrossRef]

Opt. Eng. (1)

W. H. Peters and W. F. Ranson, "Digital image techniques in experimental stress analysis," Opt. Eng. (Bellingham) 21, 427-431 (1982).

Opt. Lasers Eng. (1)

E. B. Li, A. K. Tieu, and W. Y. D. Yuen, "Application of digital image correlation technique to dynamic measurement of the velocity filed in the deformation zone in cold rolling," Opt. Lasers Eng. 39, 479-488 (2003).
[CrossRef]

Other (5)

Proceedings of the 2006 SEM Annual Conference and Exposition on Experimental and Applied Mechanics, cd-rom, June 4-7, 2006 (Saint Louis, Missouri).
[PubMed]

Proceedings of the International Society for Optical Engineering, cd-rom, Vols. 5580 and 6302.
[PubMed]

R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital image processing using matlab (Prentice Hall, 2004), 1st edition.

matlab 7.0, The MathWorks, Incorporated, http://www.mathworks.com, 2006.

J. W. Dally and W. F. Riley, Experimental Stress Analysis, 4th ed., College House Enterprises, LLC (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Undeformed and deformed subimages chosen from images before and after deformation, respectively.

Fig. 2
Fig. 2

(Color online) Schematic of the dynamic experimental setup.

Fig. 3
Fig. 3

(Color online) Optical schematic of cordin-550 camera: M1, M2, M3, M4, M5 are mirrors; R1 and R2 are relay lenses; r1, r2, … r32 are relay lenses for CCDs; c1, c2, … c32 are CCD sensors.

Fig. 4
Fig. 4

(a) Image of the 5 × 5 dot pattern template used for calibration experiment, (b) photo detector output proportional to flash lamp light intensity, where A 1 , A 2 and B 1 , B 2 are two repeated acquisitions when the photodiode was placed 1 in. away in the plane perpendicular to optical axis of the camera.

Fig. 5
Fig. 5

(Color online) Experimental setup for conducting benchmark experiments for the high-speed digital camera.

Fig. 6
Fig. 6

(Color online) Benchmark experiment results for D = 400   mm and 200   mm (see Fig. 5): (a) mean and (b) standard deviations of u and v-displacement fields for X and Y translations of 60   μm ; (c) mean and (d) standard deviations of u- and v-displacement fields for X and Y translations of 300   μm . Magnification = 35.6 μm / pixel for D = 400   mm and 27   μm / pixel for D = 200   mm .

Fig. 7
Fig. 7

Benchmark experiment results for D = 400   mm (see Fig. 5) and out-of-plane displacement ( w ) = 30   μm : (a) mean and (b) standard deviation of u and v-displacement field.

Fig. 8
Fig. 8

(Color online) (a) Specimen configuration for mode I dynamic fracture experiment and (b) impactor force history and support reaction histories recorded by Instron Dynatup 9250 HV drop tower.

Fig. 9
Fig. 9

Acquired speckle images of 31 × 31   mm 2 region at various times instances; current crack tip location is shown by an arrow.

Fig. 10
Fig. 10

(Color online) Crack growth behavior in epoxy sample under mode-I dynamic loading; crack length history and crack speed history.

Fig. 11
Fig. 11

(Color online) Crack opening and sliding displacements (in μm) for pre-crack and post-crack initiation instants: (a) v displacement and (c) u displacement before crack initiation (at t = 120   μs ); (b) v displacement and (d) u displacement after crack initiation ( t = 151   μs ) ; crack initiation time 133   μs .

Fig. 12
Fig. 12

(Color online) Examples showing quality of least-squares fit of displacement data; crack opening displacement field (μm) obtained from DIC and synthetic contours for (a) t = 124   μs (before crack initiation) and (b) t = 151   μs (after crack initiation); crack initiation time = 133   μs .

Fig. 13
Fig. 13

(a) Stress intensity factors extracted from displacement field obtained from image correlation; SIF history obtained from finite element simulation up to crack initiation is also shown; (b) crack tip in-plane constraint; β obtained from experiments and finite element simulation. Broken line corresponds to crack initiation time.

Tables (2)

Tables Icon

Table 1 Alignment Differences Between Individual Optical Channels of a Cordin 550 Camera; Stretch, Rotation and Translations of Different Images with Respect to the Image Taken by Camera Number 09

Tables Icon

Table 2 Details of Benchmark Experiments: Six Sets of 32 Images Were Recorded in Each Configuration. In Configuration 2, the Camera was Kept Twice as Close as in Configuration 1

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

P ( ω x , ω y ) = F ( ω x , ω y ) G * ( ω x , ω y ) | F ( ω x , ω y ) G * ( ω x , ω y ) | 1 α ,
s ( u , v , u x , u y , v x , v y ) = 1 i , j [ F ( x i , y j ) F ¯ ] [ G ( x i * , y j * ) G ¯ ] i , j [ ( F ( x i , y j ) F ¯ ) 2 ] i , j [ ( G ( x i * , y j * ) G ¯ ) 2 ] .
x * = x + u + u x Δ x + u y Δ y ,
y * = y + v + v x Δ x + v y Δ y .
ϕ ( f ) = g Hf 2 + α s Lf 2 ,
ϕ ( f ) = ( g Hf ) T ( g Hf ) + α s f T L T Lf .
f = ( H T H + α s L T S L ) 1 Hg .
L ( m , n ) = [ 0 1 0 1 4 1 0 1 0 ] .
1 n j = 1 n [ f ( j ) g ( j ) ] 2 = σ 2 ,
( x i y i ) = ( a 1 b 1 b 1 a 1 ) ( x b y b ) + ( a 0 b 0 ) ,
v = A 0 ( t ) r 1 / 2 μ sin ( θ / 2 ) ( 2 1 + ν cos 2 ( θ / 2 ) ) ν B 0 ( t ) μ ( 1 + ν ) × r sin θ C 0 ( t ) r 1 / 2 μ cos ( θ / 2 ) ( 1 ν 1 + ν sin 2 ( θ / 2 ) ) D 0 ( t ) μ ( 1 + ν ) r cos θ + Pr cos θ + Qr   sin   θ + Cr 0 + O ( r 3 / 2 ) .
v = n = 1 ( K I ) n B I ( C ) 2 μ 2 π ( n + 1 ) { β 1 r 1 n / 2 sin n 2 θ 1 + h ( n ) β 2 r 2 n / 2 sin n 2 θ 2 } + n = 1 ( K II ) n B II ( C ) 2 μ 2 π × ( n + 1 ) { β 1 r 1 n / 2 cos n 2 θ 1 + h ( n ¯ ) β 2 r 2 n / 2 cos n 2 θ 2 } + Pr cos θ + Qr   sin   θ + Cr 0 ,
r m = X 2 + β m 2 Y 2 ,     θ m = tan 1 ( β m Y X ) ,   m = 1 , 2 ,
β 1 = 1 ( c C L ) 2 ,     β 2 = 1 ( c C s ) 2 ,
C L = ( κ + 1 ) μ ( κ 1 ) ρ ,     C S = μ ρ ,     κ = 3 ν 1 + ν   for   plane   stress ,
h ( n ) = { 2 β 1 β 2 1 + β 2 2 for   odd   n 1 + β 2 2 2 for   even   n   and   h ( n ¯ ) = h ( n + 1 ) ,
B I ( c ) = ( 1 + β 2 2 ) D ,     B II ( c ) = 2 β 2 D ,   D = 4 β 1 β 2 ( 1 + β 2 2 ) 2 .

Metrics