Abstract

The digital image correlation method is extended to the study of transient deformations such as the one associated with a rapid growth of cracks in materials. A newly introduced rotating mirror type, multichannel digital high-speed camera is used in the investigation. Details of calibrating the imaging system are first described, and the methodology to estimate and correct inherent misalignments in the optical channels are outlined. A series of benchmark experiments are used to determined the accuracy of the measured displacements. A 2%–6% pixel accuracy in displacement measurements is achieved. Subsequently, the method is used to study crack growth in edge cracked beams subjected to impact loading. Decorated speckle patterns in the crack tip vicinity at rates of 225,000 frames per second are registered. Two sets of images are recorded, one before the impact and another after the impact. Using the image correlation algorithms developed for this work, the entire crack tip deformation history, from the time of impact to complete fracture, is mapped. The crack opening displacements are then analyzed to obtain the history of failure characterization parameter, namely, the dynamic stress intensity factor. The measurements are independently verified successfully by a complementary numerical analysis of the problem.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription