Abstract

Fluorescence-enhanced diffuse optical tomography is expected to be useful to the collection of functional information from small animal models. This technique is currently limited by the extent of tissue heterogeneity and management of the shape of the animals. We propose an approach based on the reconstruction of object heterogeneity, which provides an original solution to the two problems. Three evaluation campaigns are described: the first two were performed on phantoms designed to test the reconstructions in highly heterogeneous media and noncontact geometries; the third was conducted on mice with lung tumors to test fluorescence yield reconstruction feasibility in vivo.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Weissleder and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
    [CrossRef] [PubMed]
  2. A. Godavarty, M. J. Eppstein, C. Zhang, A. B. Thomson, M. Gurfinkel, S. Theru, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
    [CrossRef] [PubMed]
  3. V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder, "Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate," Proc. Natl. Acad. Sci. U.S.A. 101, 12,294-12,299 (2004).
    [CrossRef]
  4. W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
    [CrossRef]
  5. S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-R93 (1999).
    [CrossRef]
  6. S. R. Arridge and W. R. B. Lionheart, "Nonuniqueness in diffusion-based optical tomography," Opt. Lett. 23, 882-884 (1998).
    [CrossRef]
  7. R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurements," IEEE Trans. Med. Imaging 23, 492-500 (2004).
    [CrossRef] [PubMed]
  8. R. Roy, A. Godavarty, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical tomography using referenced measurements of heterogeneous media," IEEE Trans. Med. Imaging 22, 824-836 (2003).
    [CrossRef] [PubMed]
  9. A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003).
    [CrossRef] [PubMed]
  10. A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, "Three-dimensional fluorescence lifetime tomography," Med. Phys. 32, 992-1000 (2005).
    [CrossRef] [PubMed]
  11. E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
    [CrossRef] [PubMed]
  12. A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in presence of heterogeneities: Study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1384 (2005).
    [CrossRef] [PubMed]
  13. V. Ntziachristos and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation," Opt. Lett. 26, 893-895 (2001).
    [CrossRef]
  14. J. Ripoll, R. B. Schulz, and V. Ntziachristos, "Free-space propagation of diffuse light: theory and experiments," Phys. Rev. Lett. 91, 103901.1-103901.4 (2003).
    [CrossRef]
  15. J. Ripoll and V. Ntziachristos, "From finite to infinite volumes: removal of boundaries in diffuse wave imaging," Phys. Rev. Lett. 96, 173903 (2006).
    [CrossRef] [PubMed]
  16. R. C. Haskell, L. O. Svaasand, T. Tsay, T. Feng, M. S. McAddams, and B. J. Tromberg, "Boundary conditions for the diffusion equation in radiative transfer," J. Opt. Soc. Am. A 11, 2727-2741 (1994).
    [CrossRef]
  17. E. Scherleitner and B. G. Zagar, "Optical tomography imaging based on higher order Born approximation of diffuse photon density waves," IEEE Trans. Instrum. Meas. 54, 1607-1611 (2005).
    [CrossRef]
  18. J. C. Ye, K. J. Webb, R. P. Millane, and T. J. Downar, "Modified distorted Born iterative method with an approximate Fréchet derivative for optical diffusion tomography," J. Opt. Soc. Am. A 16, 1814-1826 (1999).
    [CrossRef]
  19. M. S. Patterson and B. W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33, 1963-1974 (1994).
    [CrossRef] [PubMed]
  20. M. A. O'Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996).
    [CrossRef] [PubMed]
  21. M. A. O'Leary, Imaging with Diffuse Photon Density Waves,Ph.D. dissertation(University of Pennsylvania, 1996).
  22. A. Da Silva, J. Boutet, A. Planat-Chrétien, J.-M. Dinten, and A. Glière, "Evaluation of a segmentation-based reconstruction scheme for fluorescence-enhanced diffuse optical tomography," Proc. SPIE 5859, 246-255 (2005).
  23. A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, J. L. Coll, V. Josserand, I. Texier-Nogues, P. Peltié, and P. Rizo, "Whole body animal examination by fluorescence tomography," presented at OSA Biomedical Optics Topical Meeting, Fort Lauderdale, Fla., USA, 19-23 March 2006.

2006

J. Ripoll and V. Ntziachristos, "From finite to infinite volumes: removal of boundaries in diffuse wave imaging," Phys. Rev. Lett. 96, 173903 (2006).
[CrossRef] [PubMed]

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, J. L. Coll, V. Josserand, I. Texier-Nogues, P. Peltié, and P. Rizo, "Whole body animal examination by fluorescence tomography," presented at OSA Biomedical Optics Topical Meeting, Fort Lauderdale, Fla., USA, 19-23 March 2006.

2005

A. Da Silva, J. Boutet, A. Planat-Chrétien, J.-M. Dinten, and A. Glière, "Evaluation of a segmentation-based reconstruction scheme for fluorescence-enhanced diffuse optical tomography," Proc. SPIE 5859, 246-255 (2005).

E. Scherleitner and B. G. Zagar, "Optical tomography imaging based on higher order Born approximation of diffuse photon density waves," IEEE Trans. Instrum. Meas. 54, 1607-1611 (2005).
[CrossRef]

A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, "Three-dimensional fluorescence lifetime tomography," Med. Phys. 32, 992-1000 (2005).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in presence of heterogeneities: Study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1384 (2005).
[CrossRef] [PubMed]

2004

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurements," IEEE Trans. Med. Imaging 23, 492-500 (2004).
[CrossRef] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder, "Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate," Proc. Natl. Acad. Sci. U.S.A. 101, 12,294-12,299 (2004).
[CrossRef]

2003

R. Weissleder and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, A. B. Thomson, M. Gurfinkel, S. Theru, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

R. Roy, A. Godavarty, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical tomography using referenced measurements of heterogeneous media," IEEE Trans. Med. Imaging 22, 824-836 (2003).
[CrossRef] [PubMed]

J. Ripoll, R. B. Schulz, and V. Ntziachristos, "Free-space propagation of diffuse light: theory and experiments," Phys. Rev. Lett. 91, 103901.1-103901.4 (2003).
[CrossRef]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

A. B. Milstein, S. Oh, K. J. Webb, C. A. Bouman, Q. Zhang, D. A. Boas, and R. P. Millane, "Fluorescence optical diffusion tomography," Appl. Opt. 42, 3081-3094 (2003).
[CrossRef] [PubMed]

2001

1999

1998

1996

M. A. O'Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996).
[CrossRef] [PubMed]

M. A. O'Leary, Imaging with Diffuse Photon Density Waves,Ph.D. dissertation(University of Pennsylvania, 1996).

1994

1990

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

Arridge, S. R.

Berger, M.

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, J. L. Coll, V. Josserand, I. Texier-Nogues, P. Peltié, and P. Rizo, "Whole body animal examination by fluorescence tomography," presented at OSA Biomedical Optics Topical Meeting, Fort Lauderdale, Fla., USA, 19-23 March 2006.

Boas, D. A.

Bogdanov, A.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder, "Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate," Proc. Natl. Acad. Sci. U.S.A. 101, 12,294-12,299 (2004).
[CrossRef]

Bouman, C. A.

Boutet, J.

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, J. L. Coll, V. Josserand, I. Texier-Nogues, P. Peltié, and P. Rizo, "Whole body animal examination by fluorescence tomography," presented at OSA Biomedical Optics Topical Meeting, Fort Lauderdale, Fla., USA, 19-23 March 2006.

A. Da Silva, J. Boutet, A. Planat-Chrétien, J.-M. Dinten, and A. Glière, "Evaluation of a segmentation-based reconstruction scheme for fluorescence-enhanced diffuse optical tomography," Proc. SPIE 5859, 246-255 (2005).

Chance, B.

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

Coll, J. L.

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, J. L. Coll, V. Josserand, I. Texier-Nogues, P. Peltié, and P. Rizo, "Whole body animal examination by fluorescence tomography," presented at OSA Biomedical Optics Topical Meeting, Fort Lauderdale, Fla., USA, 19-23 March 2006.

Da Silva, A.

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, J. L. Coll, V. Josserand, I. Texier-Nogues, P. Peltié, and P. Rizo, "Whole body animal examination by fluorescence tomography," presented at OSA Biomedical Optics Topical Meeting, Fort Lauderdale, Fla., USA, 19-23 March 2006.

A. Da Silva, J. Boutet, A. Planat-Chrétien, J.-M. Dinten, and A. Glière, "Evaluation of a segmentation-based reconstruction scheme for fluorescence-enhanced diffuse optical tomography," Proc. SPIE 5859, 246-255 (2005).

Dinten, J.-M.

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, J. L. Coll, V. Josserand, I. Texier-Nogues, P. Peltié, and P. Rizo, "Whole body animal examination by fluorescence tomography," presented at OSA Biomedical Optics Topical Meeting, Fort Lauderdale, Fla., USA, 19-23 March 2006.

A. Da Silva, J. Boutet, A. Planat-Chrétien, J.-M. Dinten, and A. Glière, "Evaluation of a segmentation-based reconstruction scheme for fluorescence-enhanced diffuse optical tomography," Proc. SPIE 5859, 246-255 (2005).

Downar, T. J.

Eppstein, M. J.

A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, "Three-dimensional fluorescence lifetime tomography," Med. Phys. 32, 992-1000 (2005).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, A. B. Thomson, M. Gurfinkel, S. Theru, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

Feng, T.

Glière, A.

A. Da Silva, J. Boutet, A. Planat-Chrétien, J.-M. Dinten, and A. Glière, "Evaluation of a segmentation-based reconstruction scheme for fluorescence-enhanced diffuse optical tomography," Proc. SPIE 5859, 246-255 (2005).

Godavarty, A.

A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, "Three-dimensional fluorescence lifetime tomography," Med. Phys. 32, 992-1000 (2005).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, A. B. Thomson, M. Gurfinkel, S. Theru, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

R. Roy, A. Godavarty, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical tomography using referenced measurements of heterogeneous media," IEEE Trans. Med. Imaging 22, 824-836 (2003).
[CrossRef] [PubMed]

Graves, E.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder, "Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate," Proc. Natl. Acad. Sci. U.S.A. 101, 12,294-12,299 (2004).
[CrossRef]

Graves, E. E.

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

Gurfinkel, M.

A. Godavarty, M. J. Eppstein, C. Zhang, A. B. Thomson, M. Gurfinkel, S. Theru, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

Haskell, R. C.

Hervé, L.

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, J. L. Coll, V. Josserand, I. Texier-Nogues, P. Peltié, and P. Rizo, "Whole body animal examination by fluorescence tomography," presented at OSA Biomedical Optics Topical Meeting, Fort Lauderdale, Fla., USA, 19-23 March 2006.

Josephson, L.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder, "Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate," Proc. Natl. Acad. Sci. U.S.A. 101, 12,294-12,299 (2004).
[CrossRef]

Josserand, V.

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, J. L. Coll, V. Josserand, I. Texier-Nogues, P. Peltié, and P. Rizo, "Whole body animal examination by fluorescence tomography," presented at OSA Biomedical Optics Topical Meeting, Fort Lauderdale, Fla., USA, 19-23 March 2006.

Koenig, A.

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, J. L. Coll, V. Josserand, I. Texier-Nogues, P. Peltié, and P. Rizo, "Whole body animal examination by fluorescence tomography," presented at OSA Biomedical Optics Topical Meeting, Fort Lauderdale, Fla., USA, 19-23 March 2006.

Li, X. D.

Lionheart, W. R. B.

McAddams, M. S.

Millane, R. P.

Milstein, A. B.

Ntziachristos, V.

J. Ripoll and V. Ntziachristos, "From finite to infinite volumes: removal of boundaries in diffuse wave imaging," Phys. Rev. Lett. 96, 173903 (2006).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in presence of heterogeneities: Study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1384 (2005).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurements," IEEE Trans. Med. Imaging 23, 492-500 (2004).
[CrossRef] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder, "Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate," Proc. Natl. Acad. Sci. U.S.A. 101, 12,294-12,299 (2004).
[CrossRef]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
[CrossRef] [PubMed]

J. Ripoll, R. B. Schulz, and V. Ntziachristos, "Free-space propagation of diffuse light: theory and experiments," Phys. Rev. Lett. 91, 103901.1-103901.4 (2003).
[CrossRef]

V. Ntziachristos and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation," Opt. Lett. 26, 893-895 (2001).
[CrossRef]

Oh, S.

O'Leary, M. A.

M. A. O'Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21, 158-160 (1996).
[CrossRef] [PubMed]

M. A. O'Leary, Imaging with Diffuse Photon Density Waves,Ph.D. dissertation(University of Pennsylvania, 1996).

Patterson, M. S.

Peltié, P.

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, J. L. Coll, V. Josserand, I. Texier-Nogues, P. Peltié, and P. Rizo, "Whole body animal examination by fluorescence tomography," presented at OSA Biomedical Optics Topical Meeting, Fort Lauderdale, Fla., USA, 19-23 March 2006.

Planat-Chrétien, A.

A. Da Silva, J. Boutet, A. Planat-Chrétien, J.-M. Dinten, and A. Glière, "Evaluation of a segmentation-based reconstruction scheme for fluorescence-enhanced diffuse optical tomography," Proc. SPIE 5859, 246-255 (2005).

Pogue, B. W.

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

Ripoll, J.

J. Ripoll and V. Ntziachristos, "From finite to infinite volumes: removal of boundaries in diffuse wave imaging," Phys. Rev. Lett. 96, 173903 (2006).
[CrossRef] [PubMed]

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in presence of heterogeneities: Study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1384 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder, "Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate," Proc. Natl. Acad. Sci. U.S.A. 101, 12,294-12,299 (2004).
[CrossRef]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurements," IEEE Trans. Med. Imaging 23, 492-500 (2004).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

J. Ripoll, R. B. Schulz, and V. Ntziachristos, "Free-space propagation of diffuse light: theory and experiments," Phys. Rev. Lett. 91, 103901.1-103901.4 (2003).
[CrossRef]

Rizo, P.

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, J. L. Coll, V. Josserand, I. Texier-Nogues, P. Peltié, and P. Rizo, "Whole body animal examination by fluorescence tomography," presented at OSA Biomedical Optics Topical Meeting, Fort Lauderdale, Fla., USA, 19-23 March 2006.

Roy, R.

R. Roy, A. Godavarty, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical tomography using referenced measurements of heterogeneous media," IEEE Trans. Med. Imaging 22, 824-836 (2003).
[CrossRef] [PubMed]

Schellenberger, E. A.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder, "Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate," Proc. Natl. Acad. Sci. U.S.A. 101, 12,294-12,299 (2004).
[CrossRef]

Scherleitner, E.

E. Scherleitner and B. G. Zagar, "Optical tomography imaging based on higher order Born approximation of diffuse photon density waves," IEEE Trans. Instrum. Meas. 54, 1607-1611 (2005).
[CrossRef]

Schulz, R. B.

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurements," IEEE Trans. Med. Imaging 23, 492-500 (2004).
[CrossRef] [PubMed]

J. Ripoll, R. B. Schulz, and V. Ntziachristos, "Free-space propagation of diffuse light: theory and experiments," Phys. Rev. Lett. 91, 103901.1-103901.4 (2003).
[CrossRef]

Sevick-Muraca, E. M.

A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, "Three-dimensional fluorescence lifetime tomography," Med. Phys. 32, 992-1000 (2005).
[CrossRef] [PubMed]

A. Godavarty, M. J. Eppstein, C. Zhang, A. B. Thomson, M. Gurfinkel, S. Theru, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

R. Roy, A. Godavarty, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical tomography using referenced measurements of heterogeneous media," IEEE Trans. Med. Imaging 22, 824-836 (2003).
[CrossRef] [PubMed]

Soubret, A.

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in presence of heterogeneities: Study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1384 (2005).
[CrossRef] [PubMed]

Svaasand, L. O.

Texier-Nogues, I.

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, J. L. Coll, V. Josserand, I. Texier-Nogues, P. Peltié, and P. Rizo, "Whole body animal examination by fluorescence tomography," presented at OSA Biomedical Optics Topical Meeting, Fort Lauderdale, Fla., USA, 19-23 March 2006.

Theru, S.

A. Godavarty, M. J. Eppstein, C. Zhang, A. B. Thomson, M. Gurfinkel, S. Theru, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

Thomson, A. B.

A. Godavarty, M. J. Eppstein, C. Zhang, A. B. Thomson, M. Gurfinkel, S. Theru, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

Tromberg, B. J.

Tsay, T.

Webb, K. J.

Weissleder, R.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder, "Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate," Proc. Natl. Acad. Sci. U.S.A. 101, 12,294-12,299 (2004).
[CrossRef]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
[CrossRef] [PubMed]

V. Ntziachristos and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation," Opt. Lett. 26, 893-895 (2001).
[CrossRef]

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

Ye, J. C.

Yessayan, D.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder, "Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate," Proc. Natl. Acad. Sci. U.S.A. 101, 12,294-12,299 (2004).
[CrossRef]

Yodh, A. G.

Zagar, B. G.

E. Scherleitner and B. G. Zagar, "Optical tomography imaging based on higher order Born approximation of diffuse photon density waves," IEEE Trans. Instrum. Meas. 54, 1607-1611 (2005).
[CrossRef]

Zhang, C.

A. Godavarty, M. J. Eppstein, C. Zhang, A. B. Thomson, M. Gurfinkel, S. Theru, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

Zhang, Q.

Appl. Opt.

IEEE J. Quantum Electron.

W. F. Cheong, S. A. Prahl, and A. J. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990).
[CrossRef]

IEEE Trans. Instrum. Meas.

E. Scherleitner and B. G. Zagar, "Optical tomography imaging based on higher order Born approximation of diffuse photon density waves," IEEE Trans. Instrum. Meas. 54, 1607-1611 (2005).
[CrossRef]

IEEE Trans. Med. Imaging

A. Soubret, J. Ripoll, and V. Ntziachristos, "Accuracy of fluorescent tomography in presence of heterogeneities: Study of the normalized Born ratio," IEEE Trans. Med. Imaging 24, 1377-1384 (2005).
[CrossRef] [PubMed]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurements," IEEE Trans. Med. Imaging 23, 492-500 (2004).
[CrossRef] [PubMed]

R. Roy, A. Godavarty, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical tomography using referenced measurements of heterogeneous media," IEEE Trans. Med. Imaging 22, 824-836 (2003).
[CrossRef] [PubMed]

Inverse Probl.

S. R. Arridge, "Optical tomography in medical imaging," Inverse Probl. 15, R41-R93 (1999).
[CrossRef]

J. Opt. Soc. Am. A

Med. Phys.

A. Godavarty, E. M. Sevick-Muraca, and M. J. Eppstein, "Three-dimensional fluorescence lifetime tomography," Med. Phys. 32, 992-1000 (2005).
[CrossRef] [PubMed]

E. E. Graves, J. Ripoll, R. Weissleder, and V. Ntziachristos, "A submillimeter resolution fluorescence molecular imaging system for small animal imaging," Med. Phys. 30, 901-911 (2003).
[CrossRef] [PubMed]

Nat. Med.

R. Weissleder and V. Ntziachristos, "Shedding light onto live molecular targets," Nat. Med. 9, 123-128 (2003).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Med. Biol.

A. Godavarty, M. J. Eppstein, C. Zhang, A. B. Thomson, M. Gurfinkel, S. Theru, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera," Phys. Med. Biol. 48, 1701-1720 (2003).
[CrossRef] [PubMed]

Phys. Rev. Lett.

J. Ripoll, R. B. Schulz, and V. Ntziachristos, "Free-space propagation of diffuse light: theory and experiments," Phys. Rev. Lett. 91, 103901.1-103901.4 (2003).
[CrossRef]

J. Ripoll and V. Ntziachristos, "From finite to infinite volumes: removal of boundaries in diffuse wave imaging," Phys. Rev. Lett. 96, 173903 (2006).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

V. Ntziachristos, E. A. Schellenberger, J. Ripoll, D. Yessayan, E. Graves, A. Bogdanov, Jr., L. Josephson, and R. Weissleder, "Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate," Proc. Natl. Acad. Sci. U.S.A. 101, 12,294-12,299 (2004).
[CrossRef]

Proc. SPIE

A. Da Silva, J. Boutet, A. Planat-Chrétien, J.-M. Dinten, and A. Glière, "Evaluation of a segmentation-based reconstruction scheme for fluorescence-enhanced diffuse optical tomography," Proc. SPIE 5859, 246-255 (2005).

Other

A. Koenig, L. Hervé, A. Da Silva, J.-M. Dinten, J. Boutet, M. Berger, J. L. Coll, V. Josserand, I. Texier-Nogues, P. Peltié, and P. Rizo, "Whole body animal examination by fluorescence tomography," presented at OSA Biomedical Optics Topical Meeting, Fort Lauderdale, Fla., USA, 19-23 March 2006.

M. A. O'Leary, Imaging with Diffuse Photon Density Waves,Ph.D. dissertation(University of Pennsylvania, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Principal schema of fDOT measurements.

Fig. 2
Fig. 2

Geometry of the simulation and the nominal meshes.

Fig. 3
Fig. 3

Schema of the free-space propagation of the light outside the medium.

Fig. 4
Fig. 4

Schema of the fDOT bench.

Fig. 5
Fig. 5

Spectra measured on our system: laser, excitation filter, emission filter, and Alexa 750 absorption and fluorescence spectra.

Fig. 6
Fig. 6

Sum of the reconstructed fluorescence yield where the fluorophore dot is used inside a homogeneous 15 mm thick intralipid medium. Three z positions, i.e., 6, 9, and 12   mm , and four concentrations, i.e., 0.55, 1.1, 2.2, and 3.3 M (μmol∕l) were tested.

Fig. 7
Fig. 7

Heterogeneous solid phantom used to validate reconstruction of the fluorescence yield in the presence of high attenuation.

Fig. 8
Fig. 8

3D rendering (left) and y projection (right) of the reconstructed fluorescence yield of the heterogeneity phantom. (Top) Reconstruction of the heterogeneous solid phantom in the absence of high attenuation. The three fluorescence regions are well separated and positioned. (Middle) Reconstruction of the heterogeneous solid phantom in the presence of high attenuation using the Born ratio. The three fluorescence regions are not separated in the profile. The central fluorescence is overestimated and tends to merge with its nearest neighbor. The lateral fluorescence regions are underestimated and positioned too high. (Bottom) Reconstruction of the heterogeneous solid phantom in the presence of high attenuation using heterogeneity correction. The three fluorescence regions are separated and the positions of the three regions are correct, but the intensity of the central fluorophore is too low.

Fig. 9
Fig. 9

Reconstructed map of heterogeneities. The absorber cylinder is correctly reconstructed.

Fig. 10
Fig. 10

Schema of the resin phantom (units of mm) with two tubes filled with Alexa750 fluorophores merged with its photograph.

Fig. 11
Fig. 11

Projection of the reconstruction of the k 2 map along the cylinder axis. We notice that the boundaries of the phantom are interpreted as high attenuation material (shown by the dark areas).

Fig. 12
Fig. 12

Noncontact phantom reconstructions, xy and xz planes.

Fig. 13
Fig. 13

Reconstruction results over the lungs, 3D representation of fluorochrome distribution reconstruction: (top) for a mouse immersed in adaptation liquid without taking into account heterogeneities, (middle) for a mouse immersed in adaptation liquid taking into account heterogeneities, (bottom) for a mouse without adaptation liquid taking into account heterogeneities. The gray scale is the same in the three cases.

Tables (4)

Tables Icon

Table 1 Quantitative Results Obtained from the Fluorescence Yield Reconstruction of a Homogeneous Phantom When Using the Heterogeneity Correction Method a

Tables Icon

Table 2 Quantitative Results Obtained from the Fluorescence Yield Reconstruction of the Heterogeneity Phantom When Using the Normalized Born Approximation a

Tables Icon

Table 3 Quantitative Results Obtained from the Fluorescence Yield Reconstruction of the Heterogeneity Phantom When Using the Heterogeneity Correction Method a

Tables Icon

Table 4 Quantitative Results Obtained from the Fluorescence Yield Reconstruction of the Noncontact Phantom a

Equations (166)

Equations on this page are rendered with MathJax. Learn more.

λ e x
λ e m
λ e x
λ e m
( μ a μ s )
( D μ a ) Φ ( r ) = S ( r ) ,
D = 1 / ( 3 μ s )
μ s
μ a
S ( r )
Φ ( r )
S ( r )
Φ ( r ) n = α Φ ( r ) ,
n
( 2 k 2 ) Φ ( r ) = S ^ ( r ) ,
k 2 = 3 μ s μ a
S ^ ( r ) = S ( r ) / D
k 2
k 2
G ( r 0 , r )
r 0
( 2 k 2 ) G ( r 0 , r ) = δ ( r r 0 ) .
1 / μ s
Φ e x ( r s , r ) = λ ^ G ( r s , r ) ,
r s
λ ^
U e x ( r s , r d )
r d
U e x ( r s , r d ) = λ G ( r s , r d ) ,
X ( r )
r s
r d
U e m ( r s , r d )
U e m ( r s , r d ) = λ Ω G ( r s , r ) X ( r ) G ( r , r d ) d r .
G ( r s , r )
G ( r , r d )
δ ( r r 0 )
G ( r 0 , r m )
G ( r s , r m )
G ( r m , r d )
G ( r s , r d )
G ( r 0 , r m )
G ( r m , r d )
G ( r m , r d ) = G ( r d , r m )
( 2 k 2 )
M × M
G ( r 0 , r m ) = 0
r m
( 13 × 13 × 15 )
( 21 × 21 × 17 )
G ( r s , r m )
G ( r m , r d )
G ( r s , r d )
G s m
G m d
G s d
G s m
G s m [ s , m ]
G m d
G s d
U s d e m = λ Δ V m W s d m X m ,
U s d e m = U s d e m ( r s , r d )
X m = X ( r m )
W s d m
W s d m = G s m × G m d
X m
( SNR = 100 )
U s d e m U s d e x = m G s m X m G m d G s d Δ V .
U s d e m / U s d e x
k 2
k 2
k 2
K 2
log ( U e x ( r s , r d ) λ G ( r s , r d ) ) Ω G ( r s , r ) Δ k 2 ( r ) G ( r , r d ) G ( r s , r d ) d r ,
Δ k 2 ( r ) = K 2 ( r ) k ( r ) 2
( s , d ) , log ( U s d e x λ G s d ) m G s m Δ k m 2 G m d G s d Δ V ,
Δ k m 2 = Δ k 2 ( r m )
U s d e x = U e x ( r s , r d )
Δ V
Δ k m 2
k m 2
k 2
k 2
k 2
U s d e x λ G s d
Δ k m 2
k m 2 k m 2 + Δ k m 2
( 20 × 20
r d
R d
r d
k 2 ( r )
( 690   nm
17   mW
( 690   nm )
( 780   nm )
10 × 10
2   mm
3   cm × 3   cm
20 × 20
G s d
1   mm
4   mm
15   mm
μ a = 0.2 cm 1
μ s = 10 cm 1
3.3 μmol / l
12   mm
μ a = 0.2 cm 1
μ s = 10 cm 1
3   mm
μ s = 10 cm 1
μ a = 0.2 cm 1
3   mm
2 .4   mm
10   μM
3 .5   mm
8   mm
μ s = 10 cm 1
μ a = 2.0 cm 1
μ a = 0.2 cm 1
6 × 9
2   mm
30 × 40
0 .5   mm
13 × 30 × 18
0 .2 × 0 .1 × 0 .1   cm 3
0.2   cm
( = m X m )
( z ¯ = m X m z m / m X m )
[ σ ( z ) = m X m ( z m z ¯ ) 2 / m X m ]
X m
z m
0.05   cm
( 0 .09   cm )
( 0.43   cm )
8   mm
0 .16   cm
0 .21   cm
20   mm
12   mm
12 × 7
3   mm
3 .3 × 1 .8   cm 2
20 × 20
3.6 × 2.5 cm 2
21 × 16 × 15
0.3 × 0.3 × 0.18 cm 3
( x , y )
1.3   cm
1 .2   cm
150   μg
( x , y )
11 × 11
2   mm
20   mn
7 × 7
33 × 33
0 .875   mm
14 × 14 × 15
0 .2 × 0 .2 × 0 .1   cm 3
k 2
( 3 μ a μ s )
k 2
k 2
12   mm

Metrics