Abstract

A robust, compact, highly accurate rubidium optical frequency standard module was developed to overcome the delicate performance of conventional frequency stabilized lasers. A frequency doubled 1560  nm distributed feedback diode laser locked to a rubidium D2 saturated absorption line without using an optical amplifier was demonstrated, and dithering-free optical output was obtained. In addition, the sensitivity of the developed optical frequency standard to magnetic fields was investigated. We confirmed that the influence of the magnetic fields on the optical frequency standard can be almost negligible when using appropriate magnetic-shield films. As a result, the magnetic-field-insensitive optical frequency standard, which can be embedded in optical systems, exhibiting uncertainty less than at least 100  kHz, was successfully realized for the first time to the best of our knowledge.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, "Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser," Opt. Commun. 183, 181-187 (2000).
    [CrossRef]
  2. F.-L. Hong, A. Onae, J. Jiang, R. Guo, H. Inaba, K. Minoshima, T. R. Schibli, H. Matsumoto, and K. Nakagawa, "Absolute frequency measurement of an acetylene-stabilized laser at 1542 nm," Opt. Lett. 28, 2324-2326 (2003).
    [CrossRef] [PubMed]
  3. A. Czajkowski, A. A. Madej, and P. Dubé, "Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (ν1 + ν3) overtone band of 13C2H2," Opt. Commun. 234, 259-268 (2004).
    [CrossRef]
  4. P. Balling, "Absolute frequency measurement of wavelength standard at 1542: acetylene stabilized DFB laser," Opt. Express 13, 9196-9201 (2005).
    [CrossRef] [PubMed]
  5. J. Ye, S. Swartz, P. Jungner, and J. L. Hall, "Hyperfine structure and absolute frequency of the 87Rb 5P3/2 state," Opt. Lett. 21, 1280-1282 (1996).
    [CrossRef] [PubMed]
  6. M. Polin, N. Cry, C. Latrasse, and M. Têtu, "Progress in the realization of a frequency standard at 192.1 THz (1560.5 nm) using 87Rb-D2-line and second harmonic generation," IEEE Trans. Instrum. Meas. 46, 157-161 (1997).
    [CrossRef]
  7. M. Polin, C. Latrasse, N. Cry, and M. Têtu, "An absolute frequency reference at 192.6 THz (1556 nm) based on a two-photon absorption line of rubidium at 778 nm for WDM communication systems," IEEE Photon. Technol Lett. 9, 1631-1633 (1997).
    [CrossRef]
  8. V. Mahal, A. Arie, M. A. Arbore, and M. M. Fejer, "Quasi-phase-matched frequency doubling of a 1560 nm diode laser and locking to the rubidiúm D2 absorption lines," Opt. Lett. 21, 1217-1219 (1996).
    [CrossRef] [PubMed]
  9. A. Bruner, V. Mahal, I. Kiryuschev, A. Arie, M. A. Arbore, and M. M. Fejer, "Frequency stability at the kilohertz level of a rubidium-locked diode laser at 192.114 THz," Appl. Opt. 37, 6410-6414 (1998).
    [CrossRef]
  10. J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, "Absolute frequency measurement of a laser at 1556 nm locked to 5S1/2-5D5/2 two photon trasition in 87Rb," Opt. Commun. 173, 357-364 (2000).
    [CrossRef]
  11. K. L. Cowin, I. Thomann, T. Dennis, R. W. Fox, W. Swann, E. A. Curtis, C. W. Oates, G. Wilpers, A. Bartels, S. L. Gilbert, I. Hollberg, N. R. Newbury, and S. A. Diddams, "Absolute-frequency measurements with a stabilized near-infrared optical frequency comb from a Cr:forsterite laser," Opt. Lett. 29, 397-399 (2004).
    [CrossRef]
  12. M. Têtu, B. Villeneuve, N. Cyr, P. Tremblay, S. Thêriault, and M. Breton, "Multiwavelength source using laser diodes frequency-locked to atomic resonances," J. Lightwave Technol. 7, 1540-1548 (1989).
    [CrossRef]

2005 (1)

2004 (2)

A. Czajkowski, A. A. Madej, and P. Dubé, "Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (ν1 + ν3) overtone band of 13C2H2," Opt. Commun. 234, 259-268 (2004).
[CrossRef]

K. L. Cowin, I. Thomann, T. Dennis, R. W. Fox, W. Swann, E. A. Curtis, C. W. Oates, G. Wilpers, A. Bartels, S. L. Gilbert, I. Hollberg, N. R. Newbury, and S. A. Diddams, "Absolute-frequency measurements with a stabilized near-infrared optical frequency comb from a Cr:forsterite laser," Opt. Lett. 29, 397-399 (2004).
[CrossRef]

2003 (1)

2000 (2)

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, "Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser," Opt. Commun. 183, 181-187 (2000).
[CrossRef]

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, "Absolute frequency measurement of a laser at 1556 nm locked to 5S1/2-5D5/2 two photon trasition in 87Rb," Opt. Commun. 173, 357-364 (2000).
[CrossRef]

1998 (1)

1997 (2)

M. Polin, N. Cry, C. Latrasse, and M. Têtu, "Progress in the realization of a frequency standard at 192.1 THz (1560.5 nm) using 87Rb-D2-line and second harmonic generation," IEEE Trans. Instrum. Meas. 46, 157-161 (1997).
[CrossRef]

M. Polin, C. Latrasse, N. Cry, and M. Têtu, "An absolute frequency reference at 192.6 THz (1556 nm) based on a two-photon absorption line of rubidium at 778 nm for WDM communication systems," IEEE Photon. Technol Lett. 9, 1631-1633 (1997).
[CrossRef]

1996 (2)

1989 (1)

M. Têtu, B. Villeneuve, N. Cyr, P. Tremblay, S. Thêriault, and M. Breton, "Multiwavelength source using laser diodes frequency-locked to atomic resonances," J. Lightwave Technol. 7, 1540-1548 (1989).
[CrossRef]

Appl. Opt. (1)

IEEE Photon. Technol Lett. (1)

M. Polin, C. Latrasse, N. Cry, and M. Têtu, "An absolute frequency reference at 192.6 THz (1556 nm) based on a two-photon absorption line of rubidium at 778 nm for WDM communication systems," IEEE Photon. Technol Lett. 9, 1631-1633 (1997).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

M. Polin, N. Cry, C. Latrasse, and M. Têtu, "Progress in the realization of a frequency standard at 192.1 THz (1560.5 nm) using 87Rb-D2-line and second harmonic generation," IEEE Trans. Instrum. Meas. 46, 157-161 (1997).
[CrossRef]

J. Lightwave Technol. (1)

M. Têtu, B. Villeneuve, N. Cyr, P. Tremblay, S. Thêriault, and M. Breton, "Multiwavelength source using laser diodes frequency-locked to atomic resonances," J. Lightwave Technol. 7, 1540-1548 (1989).
[CrossRef]

Opt. Commun. (3)

J. E. Bernard, A. A. Madej, K. J. Siemsen, L. Marmet, C. Latrasse, D. Touahri, M. Poulin, M. Allard, and M. Têtu, "Absolute frequency measurement of a laser at 1556 nm locked to 5S1/2-5D5/2 two photon trasition in 87Rb," Opt. Commun. 173, 357-364 (2000).
[CrossRef]

A. Onae, T. Ikegami, K. Sugiyama, F.-L. Hong, K. Minoshima, H. Matsumoto, K. Nakagawa, M. Yoshida, and S. Harada, "Optical frequency link between an acetylene stabilized laser at 1542 nm and an Rb stabilized laser at 778 nm using a two-color mode-locked fiber laser," Opt. Commun. 183, 181-187 (2000).
[CrossRef]

A. Czajkowski, A. A. Madej, and P. Dubé, "Development and study of a 1.5 μm optical frequency standard referenced to the P(16) saturated absorption line in the (ν1 + ν3) overtone band of 13C2H2," Opt. Commun. 234, 259-268 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of Rb-stabilized laser and a photograph of the optical frequency standard module: DFB-LD, Distributed-feedback laser diode; Mod., optical phase modulator; PPLN, periodically poled lithium niobate; PBS, polarization beam splitter; PD, photodiode; DBM, double-balanced mixer; SG, signal generator.

Fig. 2
Fig. 2

Detected third-harmonic signal of saturated absorption lines of the R b 87 - D 2 line, where the optical frequency of the DFB diode laser was locked to the transition of 5 2 S 1 / 2 5 2 P 3 / 2 ( F = 2 F = 2 / F = 3 ) , indicated by the arrow.

Fig. 3
Fig. 3

Experimental setup for measuring the optical frequency stability of the Rb-stabilized diode laser.

Fig. 4
Fig. 4

Relative Allan standard deviation of beat signal generated from a pair of developed Rb-stabilized DFB diode lasers.

Fig. 5
Fig. 5

Experimental setup for measuring the optical frequency shift due to the Zeeman effect, where the Rb cell is inserted in a Helmholtz coil.

Fig. 6
Fig. 6

Relationship between external magnetic field and optical frequency shift with or without a magnetic-shielding film, where the solid line indicates without a magnetic-shielding film and the dashed curve is calculated from the attenuation of the magnetic-shielding film.

Fig. 7
Fig. 7

Principle of optical frequency measurement using an optical frequency comb generated by a femtosecond mode-locked laser, where the repetition frequency and the optical spectrum of the optical frequency comb are stabilized by using an rf standard and an optical frequency standard, respectively.

Fig. 8
Fig. 8

Schematic of the optical frequency measurement system. (PD1 and PD2, photodiode; LPF, low-pass filter.)

Fig. 9
Fig. 9

Beat note frequency ( f b 2 ) of the Rb-stabilized DFB diode laser measured by using the heterodyne optical frequency measurement system.

Fig. 10
Fig. 10

Relative Allan standard deviation of the beat note signal ( f b 2 ) measured by using the heterodyne optical frequency measurement system.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F unknown = F s ± f b 1 + N × f r e p ± f b 2 ,

Metrics