Abstract

The parameters for an effective laser-induced forward-transfer (LIFT) process of aluminum thin films using a femtosecond laser are studied. Deposited feature size as a function of laser fluence, donor film thickness, quality of focus, and the pulse duration are varied, providing a metric of the most desirable conditions for femtosecond LIFT with thin aluminum films.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. Z. Kantor and T. Szorenyi, "Dynamics of long-pulse laser transfer of micrometer-sized metal patterns as followed by time-resolved measurements of reflectivity and transmittance," J. Appl. Phys. 78, 2775-2781 (1995).
    [CrossRef]
  2. K., Bali, T., Szorenyi, M. R. Brook, and G. A. Shafeev, "High speed laser writing of gold lines from organic solutions," Appl. Surf. Sci. 69, 75-78 (1993).
    [CrossRef]
  3. D. Bauerle, Chemical Processing with Lasers, Springer Series in Materials Science (Springer-Verlag, 1986).
  4. Z., Geretovsky, T., Szorenyi, K. Bali, and A. Toth, "Dependence of deposition kinetics on precursor concentration and writing speed in pyrolytic laser deposition from solution," Thin Solid Films 241, 67-70 (1994).
    [CrossRef]
  5. R. R., Krchnavek, H. H. Gilgen, and R. M. Osgood, J. "Maskless laser writing of silicon dioxide," J. Vac. Sci. Technol. B 2, 641-644 (1984).
    [CrossRef]
  6. J.-Y. Zhang and H. Esrom, "UV-induced decomposition of adsorbed Cu-acetylacetonate films at room temperature for electroless metal plating," Appl. Surf. Sci. 54, 465-470 (1992).
    [CrossRef]
  7. P. B., Shrivastva, C., Harteveld, C. A. Boose, and B. H. Kolster, "Laser-induced prenucleation of alumina for electroless plating," Appl. Surf. Sci. 51, 165-169 (1991).
    [CrossRef]
  8. J., Bohandy, B. F. Kim, and F. J. Adrian, "Metal deposition from a supported metal film using an excimer laser," J. Appl. Phys. 60, 1538-1539 (1986).
    [CrossRef]
  9. T., Sano, H., Yamada, T., Nakayama, and I. Miyamoto, "Experimental investigation of laser induced forward transfer process of metal thin films," Appl. Surf. Sci. 186, 221-226 (2002).
    [CrossRef]
  10. H., Yamada, T., Sano, T., Nakayama, and I. Miyamoto, "Optimization of laser-induced forward transfer process of metal thin films," Appl. Surf. Sci. 197-198, 411-415 (2002).
    [CrossRef]
  11. J.-Y., Zhang, I. W., Boyd, and H. Esrom, "Lamp-induced forward transfer: a new approach for deposition of metal films," J. Mater. Sci. Lett. 17, 2037-2040 (1998).
    [CrossRef]
  12. Z., Kantor, Z., Toth, and T. Szorenyi, "Metal pattern deposition by laser-induced forward transfer," Appl. Surf. Sci. 86, 196-201 (1995).
    [CrossRef]
  13. B., Tan, K., Venkatakrishnan, and K. G. Tok, "Selective surface texturing using femtosecond pulsed laser induced forward transfer," Appl. Surf. Sci. 207, 365-371 (2003).
    [CrossRef]
  14. H., Esrom, J.-Y., Zhang, U., Kogelschatz, and A. J. Pedraza, "New approach of a laser-induced forward transfer for deposition of patterned thin metal films," Appl. Surf. Sci. 86, 202-207 (1995).
    [CrossRef]
  15. P., Serra, M., Colina, J. M., Fernández-Pradas, L. Sevilla, and J. L. Morenza, "Preparation of functional DNA microarrays through laser-induced forward transfer," Appl. Phys. Lett. 85, 1639-1641 (2004).
    [CrossRef]
  16. I. Zergioti, "Femtosecond laser microprinting of biomaterials," Appl. Phys. Lett. 86, 163902 (2005).
    [CrossRef]
  17. M., Colina, P., Serra, J. M., Fernandez-Pradas, L. Sevilla, and J. L. Morenza, "DNA deposition through laser induced forward transfer," Biosens. Bioelectron. 20, 1638-1642 (2004).
    [CrossRef]
  18. D. B., Chrisey, A., Piqué, R. A., McGill, J. S., Horwitz, and B. R. Ringeisen, "Laser deposition of polymer and biomaterial films," Chem. Rev. 103, 553-576 (2003).
    [CrossRef] [PubMed]
  19. S.-K., Chang-Jian, J.-R., Ho, J.-W. J, Cheng, and C.-K. Sung, "Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method," Nanotechnology 17, 1184-1187 (2006).
    [CrossRef]
  20. S. J. Oh, J. Zhang, Y. Cheng, H. Shimoda, and O. Zhou, "Liquid-phase fabrication of patterned carbon nanotube field emission cathodes," Appl. Phys. Lett. 84, 3738-3740 (2004).
    [CrossRef]
  21. V. Schultze and M. Wagner, "Blow-off of aluminium films," Appl. Phys. A 53, 241-248 (1991).
    [CrossRef]
  22. V. Schultze and M. Wagner, "Laser-induced forward transfer of aluminium," Appl. Surf. Sci. 52, 303-309 (1991).
    [CrossRef]
  23. Z., Kantor, Z. Toth, and T. Szorenyi, "Laser induced forward transfer: the effect of support-film interface and film-to-substrate distance on transfer," Appl. Phys. A 54, 170-175 (1992).
    [CrossRef]
  24. P., Mogyorosi, T., Szorenyi, K., Bali, Z. Toth, and I. Hevesi, "Pulsed laser ablative deposition of thin metal films," Appl. Surf. Sci. 36, 157-163 (1988).
    [CrossRef]
  25. P., Papakonstantinou, N. A. Vainos, and C. Fotakis, "Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films," Appl. Surf. Sci. 151, 159-170 (1999).
    [CrossRef]
  26. I. Zergioti, S. Mailis, N. A. Vainos, C. Fotakis, and S. Chen, "Microdeposition of metals by femtosecond excimer laser," Appl. Surf. Sci. 127-129, 601-605 (1998).
    [CrossRef]
  27. I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, "Microdeposition of metal and oxide structures using ultrashort laser pulses," Appl. Phys. A 66, 579-582 (1998).
    [CrossRef]
  28. Z. Toth and T. Szorenyi, "Pulsed laser processing of Ge/Se thin film structures," Appl. Phys. A 52, 273-279 (1991).
    [CrossRef]
  29. H., Esrom, J.-Y., Zhang, U. Kogelschatz, and A. J. Pedraza, "New approach of a laser-induced forward transfer for deposition of patterned thin metal films," Appl. Surf. Sci. 86, 202-207 (1995).
    [CrossRef]
  30. J., Bohandy, B. F., Kim, F. J. Adrian, and A. N. Jette, "Metal deposition at 532 nm using a laser transfer technique," J. Appl. Phys. 63, 1158-1162 (1988).
    [CrossRef]
  31. Z., Toth, T. Szorenyi, and A. L. Toth, "Ar+ laser-induced forward transfer (LIFT): a novel method for micrometer-size surface patterning," Appl. Surf. Sci. 69, 317-320 (1993).
    [CrossRef]
  32. H., Sakata, S., Chakraborty, E., Yokoyama, M. Wakaki, and D. Chakravorty, "Laser-induced forward transfer of TiO2-Au nanocomposite films for maskless patterning," Appl. Phys. Lett. 86, 114104 (2005).
    [CrossRef]
  33. E. Fogarassy, "Basic mechanisms and application of the laser-induced forward transfer for high-Tc superconducting thin film deposition," Progress In High-Temperature Superconducting Transistors and Other Devices, R. Singh, J. Narayan, and D. T. Shaw, eds., Proc. SPIE 1394, 169-179 (1991).
    [CrossRef]
  34. Z., Kantor, Z. Toth, and T. Szorenyi, "Laser induced forward transfer: the effect of support-film interface and film-to-substrate distance on transfer," Appl. Phys. A 54, 170-175 (1992).
    [CrossRef]
  35. Z., Kantor, Z., Toth, T. Szorenyi, and A. L. Toth, "Deposition of micrometer-sized tungsten patterns by laser transfer technique," Appl. Phys. Lett. 64, 3506-3508 (1994).
    [CrossRef]
  36. S. Mailis, I. Zergioti, G. Koundourakis, A. Ikiades, A. Patentalaki, P. Papakonstantinou, N. A. Vainos, and C. Fotakis, "Etching and printing of diffractive optical microstructures by a femtosecond excimer laser," Appl. Opt. 38, 2301-2308 (1999).
    [CrossRef]
  37. M. R. Papantonakis and R. F. Haglund, Jr., "Picosecond pulsed laser deposition at high vibrational excitation density: the case of poly(tetrafluoroethylene)," Appl. Phys. A 79, 1687-1694 (2004).
    [CrossRef]
  38. D. G., Papazoglou, I., Zergioti, N. A. Vainos, and C. Fotakis, "Microfabrication of optically active InOx microstructures by ultrashort laser pulses," J. Optoelectron. Adv. Mater. 4, 809-812 (2002).
  39. A.-C., Tien, Z. S. Sacks, and F. J. Mayer, "Precision laser metallization," Microelectron. Eng. 56, 273-279 (2001).
    [CrossRef]
  40. L. Yang, "Microdroplet deposition of copper film by femtosecond laser-induced forward transfer," Appl. Phys. Lett. 89, 161110-161112 (2006).
    [CrossRef]
  41. D. P., Banks, C., Grivas, J. D., Mills, R. W. Eason, and I. Zergioti, "Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer," Appl. Phys. Lett. 89, 193107 (2006).
    [CrossRef]
  42. S., Bera, A. J., Sabbah, C. G. Durfee, and J. A. Squier, "Development of a femtosecond micromachining workstation by use of spectral interferometry," Opt. Lett. 30, 373-375 (2005).
    [CrossRef] [PubMed]
  43. A. B. Bullock, "Laser-induced back-ablation of aluminum thin films using picosecond laser pulses," in U.S. Department of Energy (University of California and Lawrence Livermore National Laboratory, 1999), p. 177.
  44. A. B. Bullock and P. R. Bolton, "Laser-induced back ablation of aluminum thin films using picosecond laser pulses," J. Appl. Phys. 85, 460-465 (1999).
    [CrossRef]

2006 (3)

S.-K., Chang-Jian, J.-R., Ho, J.-W. J, Cheng, and C.-K. Sung, "Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method," Nanotechnology 17, 1184-1187 (2006).
[CrossRef]

L. Yang, "Microdroplet deposition of copper film by femtosecond laser-induced forward transfer," Appl. Phys. Lett. 89, 161110-161112 (2006).
[CrossRef]

D. P., Banks, C., Grivas, J. D., Mills, R. W. Eason, and I. Zergioti, "Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer," Appl. Phys. Lett. 89, 193107 (2006).
[CrossRef]

2005 (3)

S., Bera, A. J., Sabbah, C. G. Durfee, and J. A. Squier, "Development of a femtosecond micromachining workstation by use of spectral interferometry," Opt. Lett. 30, 373-375 (2005).
[CrossRef] [PubMed]

I. Zergioti, "Femtosecond laser microprinting of biomaterials," Appl. Phys. Lett. 86, 163902 (2005).
[CrossRef]

H., Sakata, S., Chakraborty, E., Yokoyama, M. Wakaki, and D. Chakravorty, "Laser-induced forward transfer of TiO2-Au nanocomposite films for maskless patterning," Appl. Phys. Lett. 86, 114104 (2005).
[CrossRef]

2004 (4)

P., Serra, M., Colina, J. M., Fernández-Pradas, L. Sevilla, and J. L. Morenza, "Preparation of functional DNA microarrays through laser-induced forward transfer," Appl. Phys. Lett. 85, 1639-1641 (2004).
[CrossRef]

M., Colina, P., Serra, J. M., Fernandez-Pradas, L. Sevilla, and J. L. Morenza, "DNA deposition through laser induced forward transfer," Biosens. Bioelectron. 20, 1638-1642 (2004).
[CrossRef]

S. J. Oh, J. Zhang, Y. Cheng, H. Shimoda, and O. Zhou, "Liquid-phase fabrication of patterned carbon nanotube field emission cathodes," Appl. Phys. Lett. 84, 3738-3740 (2004).
[CrossRef]

M. R. Papantonakis and R. F. Haglund, Jr., "Picosecond pulsed laser deposition at high vibrational excitation density: the case of poly(tetrafluoroethylene)," Appl. Phys. A 79, 1687-1694 (2004).
[CrossRef]

2003 (2)

B., Tan, K., Venkatakrishnan, and K. G. Tok, "Selective surface texturing using femtosecond pulsed laser induced forward transfer," Appl. Surf. Sci. 207, 365-371 (2003).
[CrossRef]

D. B., Chrisey, A., Piqué, R. A., McGill, J. S., Horwitz, and B. R. Ringeisen, "Laser deposition of polymer and biomaterial films," Chem. Rev. 103, 553-576 (2003).
[CrossRef] [PubMed]

2002 (3)

T., Sano, H., Yamada, T., Nakayama, and I. Miyamoto, "Experimental investigation of laser induced forward transfer process of metal thin films," Appl. Surf. Sci. 186, 221-226 (2002).
[CrossRef]

H., Yamada, T., Sano, T., Nakayama, and I. Miyamoto, "Optimization of laser-induced forward transfer process of metal thin films," Appl. Surf. Sci. 197-198, 411-415 (2002).
[CrossRef]

D. G., Papazoglou, I., Zergioti, N. A. Vainos, and C. Fotakis, "Microfabrication of optically active InOx microstructures by ultrashort laser pulses," J. Optoelectron. Adv. Mater. 4, 809-812 (2002).

2001 (1)

A.-C., Tien, Z. S. Sacks, and F. J. Mayer, "Precision laser metallization," Microelectron. Eng. 56, 273-279 (2001).
[CrossRef]

1999 (3)

A. B. Bullock and P. R. Bolton, "Laser-induced back ablation of aluminum thin films using picosecond laser pulses," J. Appl. Phys. 85, 460-465 (1999).
[CrossRef]

S. Mailis, I. Zergioti, G. Koundourakis, A. Ikiades, A. Patentalaki, P. Papakonstantinou, N. A. Vainos, and C. Fotakis, "Etching and printing of diffractive optical microstructures by a femtosecond excimer laser," Appl. Opt. 38, 2301-2308 (1999).
[CrossRef]

P., Papakonstantinou, N. A. Vainos, and C. Fotakis, "Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films," Appl. Surf. Sci. 151, 159-170 (1999).
[CrossRef]

1998 (3)

I. Zergioti, S. Mailis, N. A. Vainos, C. Fotakis, and S. Chen, "Microdeposition of metals by femtosecond excimer laser," Appl. Surf. Sci. 127-129, 601-605 (1998).
[CrossRef]

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, "Microdeposition of metal and oxide structures using ultrashort laser pulses," Appl. Phys. A 66, 579-582 (1998).
[CrossRef]

J.-Y., Zhang, I. W., Boyd, and H. Esrom, "Lamp-induced forward transfer: a new approach for deposition of metal films," J. Mater. Sci. Lett. 17, 2037-2040 (1998).
[CrossRef]

1995 (4)

Z., Kantor, Z., Toth, and T. Szorenyi, "Metal pattern deposition by laser-induced forward transfer," Appl. Surf. Sci. 86, 196-201 (1995).
[CrossRef]

Z. Kantor and T. Szorenyi, "Dynamics of long-pulse laser transfer of micrometer-sized metal patterns as followed by time-resolved measurements of reflectivity and transmittance," J. Appl. Phys. 78, 2775-2781 (1995).
[CrossRef]

H., Esrom, J.-Y., Zhang, U., Kogelschatz, and A. J. Pedraza, "New approach of a laser-induced forward transfer for deposition of patterned thin metal films," Appl. Surf. Sci. 86, 202-207 (1995).
[CrossRef]

H., Esrom, J.-Y., Zhang, U. Kogelschatz, and A. J. Pedraza, "New approach of a laser-induced forward transfer for deposition of patterned thin metal films," Appl. Surf. Sci. 86, 202-207 (1995).
[CrossRef]

1994 (2)

Z., Kantor, Z., Toth, T. Szorenyi, and A. L. Toth, "Deposition of micrometer-sized tungsten patterns by laser transfer technique," Appl. Phys. Lett. 64, 3506-3508 (1994).
[CrossRef]

Z., Geretovsky, T., Szorenyi, K. Bali, and A. Toth, "Dependence of deposition kinetics on precursor concentration and writing speed in pyrolytic laser deposition from solution," Thin Solid Films 241, 67-70 (1994).
[CrossRef]

1993 (2)

K., Bali, T., Szorenyi, M. R. Brook, and G. A. Shafeev, "High speed laser writing of gold lines from organic solutions," Appl. Surf. Sci. 69, 75-78 (1993).
[CrossRef]

Z., Toth, T. Szorenyi, and A. L. Toth, "Ar+ laser-induced forward transfer (LIFT): a novel method for micrometer-size surface patterning," Appl. Surf. Sci. 69, 317-320 (1993).
[CrossRef]

1992 (3)

Z., Kantor, Z. Toth, and T. Szorenyi, "Laser induced forward transfer: the effect of support-film interface and film-to-substrate distance on transfer," Appl. Phys. A 54, 170-175 (1992).
[CrossRef]

Z., Kantor, Z. Toth, and T. Szorenyi, "Laser induced forward transfer: the effect of support-film interface and film-to-substrate distance on transfer," Appl. Phys. A 54, 170-175 (1992).
[CrossRef]

J.-Y. Zhang and H. Esrom, "UV-induced decomposition of adsorbed Cu-acetylacetonate films at room temperature for electroless metal plating," Appl. Surf. Sci. 54, 465-470 (1992).
[CrossRef]

1991 (5)

P. B., Shrivastva, C., Harteveld, C. A. Boose, and B. H. Kolster, "Laser-induced prenucleation of alumina for electroless plating," Appl. Surf. Sci. 51, 165-169 (1991).
[CrossRef]

V. Schultze and M. Wagner, "Blow-off of aluminium films," Appl. Phys. A 53, 241-248 (1991).
[CrossRef]

V. Schultze and M. Wagner, "Laser-induced forward transfer of aluminium," Appl. Surf. Sci. 52, 303-309 (1991).
[CrossRef]

Z. Toth and T. Szorenyi, "Pulsed laser processing of Ge/Se thin film structures," Appl. Phys. A 52, 273-279 (1991).
[CrossRef]

E. Fogarassy, "Basic mechanisms and application of the laser-induced forward transfer for high-Tc superconducting thin film deposition," Progress In High-Temperature Superconducting Transistors and Other Devices, R. Singh, J. Narayan, and D. T. Shaw, eds., Proc. SPIE 1394, 169-179 (1991).
[CrossRef]

1988 (2)

J., Bohandy, B. F., Kim, F. J. Adrian, and A. N. Jette, "Metal deposition at 532 nm using a laser transfer technique," J. Appl. Phys. 63, 1158-1162 (1988).
[CrossRef]

P., Mogyorosi, T., Szorenyi, K., Bali, Z. Toth, and I. Hevesi, "Pulsed laser ablative deposition of thin metal films," Appl. Surf. Sci. 36, 157-163 (1988).
[CrossRef]

1986 (1)

J., Bohandy, B. F. Kim, and F. J. Adrian, "Metal deposition from a supported metal film using an excimer laser," J. Appl. Phys. 60, 1538-1539 (1986).
[CrossRef]

1984 (1)

R. R., Krchnavek, H. H. Gilgen, and R. M. Osgood, J. "Maskless laser writing of silicon dioxide," J. Vac. Sci. Technol. B 2, 641-644 (1984).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A (6)

Z., Kantor, Z. Toth, and T. Szorenyi, "Laser induced forward transfer: the effect of support-film interface and film-to-substrate distance on transfer," Appl. Phys. A 54, 170-175 (1992).
[CrossRef]

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, and C. Fotakis, "Microdeposition of metal and oxide structures using ultrashort laser pulses," Appl. Phys. A 66, 579-582 (1998).
[CrossRef]

Z. Toth and T. Szorenyi, "Pulsed laser processing of Ge/Se thin film structures," Appl. Phys. A 52, 273-279 (1991).
[CrossRef]

V. Schultze and M. Wagner, "Blow-off of aluminium films," Appl. Phys. A 53, 241-248 (1991).
[CrossRef]

Z., Kantor, Z. Toth, and T. Szorenyi, "Laser induced forward transfer: the effect of support-film interface and film-to-substrate distance on transfer," Appl. Phys. A 54, 170-175 (1992).
[CrossRef]

M. R. Papantonakis and R. F. Haglund, Jr., "Picosecond pulsed laser deposition at high vibrational excitation density: the case of poly(tetrafluoroethylene)," Appl. Phys. A 79, 1687-1694 (2004).
[CrossRef]

Appl. Phys. Lett. (7)

Z., Kantor, Z., Toth, T. Szorenyi, and A. L. Toth, "Deposition of micrometer-sized tungsten patterns by laser transfer technique," Appl. Phys. Lett. 64, 3506-3508 (1994).
[CrossRef]

H., Sakata, S., Chakraborty, E., Yokoyama, M. Wakaki, and D. Chakravorty, "Laser-induced forward transfer of TiO2-Au nanocomposite films for maskless patterning," Appl. Phys. Lett. 86, 114104 (2005).
[CrossRef]

P., Serra, M., Colina, J. M., Fernández-Pradas, L. Sevilla, and J. L. Morenza, "Preparation of functional DNA microarrays through laser-induced forward transfer," Appl. Phys. Lett. 85, 1639-1641 (2004).
[CrossRef]

I. Zergioti, "Femtosecond laser microprinting of biomaterials," Appl. Phys. Lett. 86, 163902 (2005).
[CrossRef]

S. J. Oh, J. Zhang, Y. Cheng, H. Shimoda, and O. Zhou, "Liquid-phase fabrication of patterned carbon nanotube field emission cathodes," Appl. Phys. Lett. 84, 3738-3740 (2004).
[CrossRef]

L. Yang, "Microdroplet deposition of copper film by femtosecond laser-induced forward transfer," Appl. Phys. Lett. 89, 161110-161112 (2006).
[CrossRef]

D. P., Banks, C., Grivas, J. D., Mills, R. W. Eason, and I. Zergioti, "Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer," Appl. Phys. Lett. 89, 193107 (2006).
[CrossRef]

Appl. Surf. Sci. (14)

Z., Toth, T. Szorenyi, and A. L. Toth, "Ar+ laser-induced forward transfer (LIFT): a novel method for micrometer-size surface patterning," Appl. Surf. Sci. 69, 317-320 (1993).
[CrossRef]

Z., Kantor, Z., Toth, and T. Szorenyi, "Metal pattern deposition by laser-induced forward transfer," Appl. Surf. Sci. 86, 196-201 (1995).
[CrossRef]

B., Tan, K., Venkatakrishnan, and K. G. Tok, "Selective surface texturing using femtosecond pulsed laser induced forward transfer," Appl. Surf. Sci. 207, 365-371 (2003).
[CrossRef]

H., Esrom, J.-Y., Zhang, U., Kogelschatz, and A. J. Pedraza, "New approach of a laser-induced forward transfer for deposition of patterned thin metal films," Appl. Surf. Sci. 86, 202-207 (1995).
[CrossRef]

K., Bali, T., Szorenyi, M. R. Brook, and G. A. Shafeev, "High speed laser writing of gold lines from organic solutions," Appl. Surf. Sci. 69, 75-78 (1993).
[CrossRef]

J.-Y. Zhang and H. Esrom, "UV-induced decomposition of adsorbed Cu-acetylacetonate films at room temperature for electroless metal plating," Appl. Surf. Sci. 54, 465-470 (1992).
[CrossRef]

P. B., Shrivastva, C., Harteveld, C. A. Boose, and B. H. Kolster, "Laser-induced prenucleation of alumina for electroless plating," Appl. Surf. Sci. 51, 165-169 (1991).
[CrossRef]

T., Sano, H., Yamada, T., Nakayama, and I. Miyamoto, "Experimental investigation of laser induced forward transfer process of metal thin films," Appl. Surf. Sci. 186, 221-226 (2002).
[CrossRef]

H., Yamada, T., Sano, T., Nakayama, and I. Miyamoto, "Optimization of laser-induced forward transfer process of metal thin films," Appl. Surf. Sci. 197-198, 411-415 (2002).
[CrossRef]

V. Schultze and M. Wagner, "Laser-induced forward transfer of aluminium," Appl. Surf. Sci. 52, 303-309 (1991).
[CrossRef]

H., Esrom, J.-Y., Zhang, U. Kogelschatz, and A. J. Pedraza, "New approach of a laser-induced forward transfer for deposition of patterned thin metal films," Appl. Surf. Sci. 86, 202-207 (1995).
[CrossRef]

P., Mogyorosi, T., Szorenyi, K., Bali, Z. Toth, and I. Hevesi, "Pulsed laser ablative deposition of thin metal films," Appl. Surf. Sci. 36, 157-163 (1988).
[CrossRef]

P., Papakonstantinou, N. A. Vainos, and C. Fotakis, "Microfabrication by UV femtosecond laser ablation of Pt, Cr and indium oxide thin films," Appl. Surf. Sci. 151, 159-170 (1999).
[CrossRef]

I. Zergioti, S. Mailis, N. A. Vainos, C. Fotakis, and S. Chen, "Microdeposition of metals by femtosecond excimer laser," Appl. Surf. Sci. 127-129, 601-605 (1998).
[CrossRef]

Biosens. Bioelectron. (1)

M., Colina, P., Serra, J. M., Fernandez-Pradas, L. Sevilla, and J. L. Morenza, "DNA deposition through laser induced forward transfer," Biosens. Bioelectron. 20, 1638-1642 (2004).
[CrossRef]

Chem. Rev. (1)

D. B., Chrisey, A., Piqué, R. A., McGill, J. S., Horwitz, and B. R. Ringeisen, "Laser deposition of polymer and biomaterial films," Chem. Rev. 103, 553-576 (2003).
[CrossRef] [PubMed]

J. Appl. Phys. (4)

J., Bohandy, B. F. Kim, and F. J. Adrian, "Metal deposition from a supported metal film using an excimer laser," J. Appl. Phys. 60, 1538-1539 (1986).
[CrossRef]

Z. Kantor and T. Szorenyi, "Dynamics of long-pulse laser transfer of micrometer-sized metal patterns as followed by time-resolved measurements of reflectivity and transmittance," J. Appl. Phys. 78, 2775-2781 (1995).
[CrossRef]

J., Bohandy, B. F., Kim, F. J. Adrian, and A. N. Jette, "Metal deposition at 532 nm using a laser transfer technique," J. Appl. Phys. 63, 1158-1162 (1988).
[CrossRef]

A. B. Bullock and P. R. Bolton, "Laser-induced back ablation of aluminum thin films using picosecond laser pulses," J. Appl. Phys. 85, 460-465 (1999).
[CrossRef]

J. Mater. Sci. Lett. (1)

J.-Y., Zhang, I. W., Boyd, and H. Esrom, "Lamp-induced forward transfer: a new approach for deposition of metal films," J. Mater. Sci. Lett. 17, 2037-2040 (1998).
[CrossRef]

J. Optoelectron. Adv. Mater. (1)

D. G., Papazoglou, I., Zergioti, N. A. Vainos, and C. Fotakis, "Microfabrication of optically active InOx microstructures by ultrashort laser pulses," J. Optoelectron. Adv. Mater. 4, 809-812 (2002).

J. Vac. Sci. Technol. B (1)

R. R., Krchnavek, H. H. Gilgen, and R. M. Osgood, J. "Maskless laser writing of silicon dioxide," J. Vac. Sci. Technol. B 2, 641-644 (1984).
[CrossRef]

Microelectron. Eng. (1)

A.-C., Tien, Z. S. Sacks, and F. J. Mayer, "Precision laser metallization," Microelectron. Eng. 56, 273-279 (2001).
[CrossRef]

Nanotechnology (1)

S.-K., Chang-Jian, J.-R., Ho, J.-W. J, Cheng, and C.-K. Sung, "Fabrication of carbon nanotube field emission cathodes in patterns by a laser transfer method," Nanotechnology 17, 1184-1187 (2006).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (1)

E. Fogarassy, "Basic mechanisms and application of the laser-induced forward transfer for high-Tc superconducting thin film deposition," Progress In High-Temperature Superconducting Transistors and Other Devices, R. Singh, J. Narayan, and D. T. Shaw, eds., Proc. SPIE 1394, 169-179 (1991).
[CrossRef]

Thin Solid Films (1)

Z., Geretovsky, T., Szorenyi, K. Bali, and A. Toth, "Dependence of deposition kinetics on precursor concentration and writing speed in pyrolytic laser deposition from solution," Thin Solid Films 241, 67-70 (1994).
[CrossRef]

Other (2)

D. Bauerle, Chemical Processing with Lasers, Springer Series in Materials Science (Springer-Verlag, 1986).

A. B. Bullock, "Laser-induced back-ablation of aluminum thin films using picosecond laser pulses," in U.S. Department of Energy (University of California and Lawrence Livermore National Laboratory, 1999), p. 177.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of the femtosecond laser deposition system. Inset shows the laser-induced forward-transfer process: (a) ablation, (b) transfer, and (c) deposition.

Fig. 2
Fig. 2

Fluence dependence of the deposited feature size. A Zeiss 0.65 achroplan objective was used for this experiment. The fluence values used to fabricate these features are (a) 0.23   J / cm 2 , (b) 0.45 J / cm 2 , (c) 0.90 J / cm 2 , (d) 1.35 J / cm 2 , (e) 1.80 J / cm 2 , (f) 2.24 J / cm 2 , (g) 4.48 J / cm 2 , and (h) 6.64 J / cm 2 . (i) Optical microscope image of the deposited feature pattern.

Fig. 3
Fig. 3

Fluence dependence of the deposited feature size. The laser fluence is shown along the x axis (in J / cm 2 ). The scale on the left-hand side of the graph (along y axis) shows the maximum diameter of the deposited pattern (in μm). The circular points on the viewgraph correspond to this scale. The scale on the right-hand side of the viewgraph (along y axis) shows the height of the deposited feature (in nm). The diamond shape points on the viewgraph correspond to this scale.

Fig. 4
Fig. 4

Diameter of the produced feature as a function of fluence with film thickness as a parameter.

Fig. 5
Fig. 5

Fluence profile and average feature size at different energies: (a) E = 10   nJ , (b) E = 20   nJ , and (c) E = 40   nJ . In all the cases, we used a Zeiss achroplan, 40 × , 0.65   NA microscope objective corrected for 170   μm microscope coverslip.

Fig. 6
Fig. 6

Features fabricated using different film thicknesses. We used a Zeiss achroplan objective with 0.65   NA and 40 × magnification for this experiment. Film thicknesses used: (a) 100   nm , (b) 200   nm , (c) 300   nm , (d) 400   nm , and (e) 500   nm .

Fig. 7
Fig. 7

Minimum diameter (the scale is shown along the viewgraph's left-hand side of the y axis; the data are shown as hollow circles) of the produced feature and the corresponding fluence required to produce these features (the scale shown along the viewgraph's right-hand side of the y axis; the data are shown as solid triangles) as a function of initial donor film thickness (shown along the x axis of the viewgraph).

Fig. 8
Fig. 8

Dependence of the transferred feature height with initial donor film thickness.

Fig. 9
Fig. 9

(a) Deposited feature using a Zeiss achroplan objective with 0.65 NA and 40 × magnification and 100   nm donor film thickness. (b) The atomic force microscope scan of the same spot on the donor film.

Fig. 10
Fig. 10

Features fabricated using various objectives to study the focal quality dependence of the deposited features. Objectives used: (a) a New Focus aspheric objective lens having 0.4 NA and 30 × magnification (NF 5723-A-H). (b) New Focus singlet aspheric objective lens with 0.5 NA & 20 × magnification (NF 5724-H). (c) New Focus singlet aspheric objective lens with 0.65 NA & 60 × magnification (NF 5721-B-H). (d) A Zeiss achroplan objective with 0.45   NA and 20 × magnification. (e) A Zeiss achroplan objective with 0.65   NA and 40 × magnification. (f) A water immersion Zeiss fluar objective with 0.75   NA and 20 × magnification.

Fig. 11
Fig. 11

Features fabricated using various pulse duration: (a) 45   fs pulse was used at a fluence 0.225   J / cm 2 . (b) 25   ns single pulse was used at a fluence 1.348   J / cm 2 . (c) 25   ns single pulse was used at a fluence 24.72   J / cm 2 .

Fig. 12
Fig. 12

Smallest feature obtained by laser-Induced forward transfer of Al. Film thickness used: 300   nm . Objective used: New Focus 0.65   NA and 60 × magnification (NF 5721-B-H). Energy used 20   nJ .

Metrics