Abstract

Results of the depolarization ratio (δ) of single ice particles in fixed orientations are presented to determine whether discrimination between nonspherical ice crystals (causing depolarization) and spherical water droplets (inducing no depolarization) can be made. A T-matrix method is used to compute δ over a range of particle diameters from 0.13 to 4  μm and aspect ratios χ=d/h (d is the diameter and h the height of the particle) from 0.3 to 3, where ice crystals are assumed to have a circular cylindrical shape. The depolarization ratio is primarily dependent on the orientation of the particle. Some orientations return no depolarization, whereas others generate values reaching almost δ=1. Considering the depolarization averaged over all orientations, a dependence of δ with the particle size is observed where values close to 0.25 are reached. No strong influence of the aspect ratio on the depolarization for a given particle size of 2  μm is evident, as values remain in a range between 0.2 and 0.3.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Lohmann and J. Feichter, "Global indirect aerosol effects: a review," Atmos. Chem. Phys. Disc. 5, 715-737 (2005).
    [CrossRef]
  2. Intergovernmental Panel on Climate Change, IPCC Third Assessment Report (Cambridge U. Press, 200l).
  3. G. Vali, "Atmospheric ice nucleation--a review," J. Rech. Atmos. 19, 105-115 (1985).
  4. B. Krämer, M. Schwell, O. Hübner, H. Vortisch, T. Leisner, E. Rühl, H. Baumgärtel, and L. Wöste, "Homogeneous ice nucleation observed in single levitated micro droplets," Ber. Bunsenges. Phys. Chem. 100, 1911-1914 (1996).
  5. S. E. Wood, M. B. Baker, and B. D. Swanson, "Instrument for studies of homogeneous and heterogeneous ice nucleation in free-falling supercooled water droplets," Rev. Sci. lnstrum. 73, 3988-3996 (2002).
    [CrossRef]
  6. E. Hirst, P. H. Kaye, R. S. Greenaway, P. Field, and D. W. Johnson, "Discrimination of micrometer-sized ice and super-cooled droplets in mixed-phase cloud," Atmos. Environ. 35, 33-47 (2001).
    [CrossRef]
  7. R. P. Lawson and R. H. Cormack, "Theoretical design and preliminary tests of two new particle spectrometers for cloud microphysics research," Atmos. Res. 35, 315-348 (1995).
    [CrossRef]
  8. G. M. McFarquhar, P. Yang, A. Macke, and A. J. Baran, "A new representation of the single-scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions," J. Atmos. Sci. 59, 2458-2478 (2002).
    [CrossRef]
  9. N. Liou and H. Lahore, "Laser sensing of cloud composition: a backscattered depolarization technique," J. Appl. Meteorol. 13, 257-263 (1974).
    [CrossRef]
  10. P. Yang, Y. X. Hu, D. M. Winker, J. Zhao, C. A. Hosteller, L. Poole, B. A. Baum, M. I. Mishchenko, and J. Reichardt, "Enhanced lidar backscattering by quasi-horizontally oriented ice crystal plates in cirrus clouds," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 1139-1157 (2003).
    [CrossRef]
  11. J. Hallett, "Faceted snow crystals," J. Opt. Soc. Am. A 4, 581-588 (1987).
    [CrossRef]
  12. S. Asano and M. Sato, "Light scattering by randomly oriented spheroidal particles," Appl. Opt. 19, 962-974 (1980).
    [CrossRef] [PubMed]
  13. S. Asano, "Light scattering properties of spheroidal particles," Appl. Opt. 18, 712-723 (1979).
    [CrossRef] [PubMed]
  14. K. Muinonen, K. Lumme, J. Peltoniemi, and W. M. Irvine, "Light scattering by randomly oriented crystals," Appl. Opt. 28, 3051-3060 (1989).
    [CrossRef] [PubMed]
  15. Y. Takano and K. Jayaweera, "Scattering phase matrix for hexagonal ice crystals computed from ray optics," Appl. Opt. 24, 3254-3263 (1985).
    [CrossRef] [PubMed]
  16. Q. Cai and K. N. Liou, "Polarized light scattering by hexagonal ice crystals: theory," Appl. Opt. 21, 3569-3580 (1982).
    [CrossRef] [PubMed]
  17. K. D. Rockwitz, "Scattering properties of horizontally oriented ice crystal columns in cirrus clouds. Part 1," Appl. Opt. 28, 4103-4110 (1989).
    [CrossRef] [PubMed]
  18. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements and Applications (Academic, 2000).
  19. M. I. Mishchenko and K. Sassen, "Depolarization of lidar returns by small ice crystals: an application to contrails," Geophys. Res. Lett. 25, 309-312 (1998).
    [CrossRef]
  20. S. Havemann and A. J. Baran, "Extension of T-matrix to scattering of electromagnetic plane waves by non-axisymmetric dielectric particles: application to hexagonal ice cylinders," J. Quant. Spectrosc. Radiat. Transfer. 70, 139-158 (2001).
    [CrossRef]
  21. S. Havemann, A. J. Baran, and J. M. Edwards, "Implementation of the T-matrix method on a massively parallel machine: a comparison of hexagonal ice cylinder single-scattering properties using the T-matrix and improved geometric optics methods," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 707-720 (2003).
    [CrossRef]
  22. F. M. Kahnert, "Numerical methods in electromagnetic scattering theory," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 775-824 (2003).
    [CrossRef]
  23. A. J. Baran, P. Yang, and S. Havemann, "Calculation of the single-scattering properties of randomly oriented hexagonal ice columns: a comparison of the T-matrix and the finite-difference time-domain methods," Appl. Opt. 40, 4376-4386 (2001).
    [CrossRef]
  24. P. C. Watermann, "Symmetry, unitarity, and geometry in electromagnetic scattering," Phys. Rev. D 3, 825-839 (1971).
    [CrossRef]
  25. M. I. Mishchenko, "Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation," Appl. Opt. 39, 1026-1031 (2000).
    [CrossRef]
  26. M. I. Mishchenko, "T-matrix codes for computing electromagnetic scattering by nonspherical and aggregated particles," http://www.giss.nasa.gov/∼crmim/t_matrix.html.
  27. O. Stetzer and U. Lohmann are preparing a manuscript to be called, "The Zurich Ice Nucleation Chamber (ZINC)--A new tool to investigate heterogeneous ice formation on atmospheric aerosols."
  28. K. Sassen and K. N. Liou, "Scattering of polarized laser light by water droplet, mixed-phase and ice crystals clouds. Parts I + II," J. Atmos. Sci. 36, 838-861 (1979).
    [CrossRef]
  29. K. Sassen, "Depolarization of laser light backscattered by artificial clouds," J. Appl. Meteorol. 13, 923-933 (1974).
    [CrossRef]
  30. K. Sassen, "Ice crystal habit discrimination with the optical backscatter depolarization technique," J. Appl. Meteorol. 16, 425-431 (1977).
    [CrossRef]
  31. S. Büttner, "Steulichtexperimente an asphärischen Aerosolpartikeln: depolarization und Vorwärtsstreuverhältnis von Mineralstaub und Eiskristallen," Dissertation FZKA 6989, Forschungszentrum Karlsruhe (2004).
  32. Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani. H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, "Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles," J. Geophys. Res. 108(D23), 8652, doi: (2003).
    [CrossRef]
  33. T. Sakai, T. Nagai, M. Nakazato, Y. Mano, and T. Matsumura, "Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba," Appl. Opt. 42, 7103-7116 (2003).
    [CrossRef]
  34. S. G. Warren, "Optical constants of ice from the ultraviolet to the microwave," Appl. Opt. 23, 1206-1225 (1984).
    [CrossRef] [PubMed]
  35. K. C. Young, Microphysical Processes in Clouds (Oxford U. Press, 1993).
  36. N. T. Zakharova and M. I. Mishchenko, "Scattering properties of needlelike and platelike ice spheroids with moderate size parameters," Appl. Opt. 39, 5052-5057 (2000).
    [CrossRef]
  37. M. I. Mishchenko and J. W. Hovenier, "Depolarization of light backscattered by randomly oriented nonspherical particles," Opt. Lett. 20, 1356-1358 (1995).
    [CrossRef] [PubMed]
  38. G. P. Gobbi, F. Barnaba, R. Giorgi, and A. Santacasa, "Altitude-resolved properties of a Saharan dust event over the Mediterranean," Atmos. Environ. 34, 5119-5127 (2000).
    [CrossRef]
  39. G. P. Gobbi, F. Barnaba, R. Van Dingenen, J. P. Putaud, M. Mircea, and M. C. Facchini, "Lidar and in situ observations of continental and Saharan aerosols: closure analysis of particles' optical and physical properties," Atmos. Chem. Phys. 3, 2161-2172 (2003).
    [CrossRef]
  40. K. Sassen, P. J. DeMott, J. M. Prospero, and M. R. Poellot, "Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results," Ann. Geophys. Res. Lett. 30, 1633-1636 (2003).
    [CrossRef]

2005 (1)

U. Lohmann and J. Feichter, "Global indirect aerosol effects: a review," Atmos. Chem. Phys. Disc. 5, 715-737 (2005).
[CrossRef]

2003 (7)

P. Yang, Y. X. Hu, D. M. Winker, J. Zhao, C. A. Hosteller, L. Poole, B. A. Baum, M. I. Mishchenko, and J. Reichardt, "Enhanced lidar backscattering by quasi-horizontally oriented ice crystal plates in cirrus clouds," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 1139-1157 (2003).
[CrossRef]

S. Havemann, A. J. Baran, and J. M. Edwards, "Implementation of the T-matrix method on a massively parallel machine: a comparison of hexagonal ice cylinder single-scattering properties using the T-matrix and improved geometric optics methods," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 707-720 (2003).
[CrossRef]

F. M. Kahnert, "Numerical methods in electromagnetic scattering theory," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 775-824 (2003).
[CrossRef]

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani. H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, "Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles," J. Geophys. Res. 108(D23), 8652, doi: (2003).
[CrossRef]

T. Sakai, T. Nagai, M. Nakazato, Y. Mano, and T. Matsumura, "Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba," Appl. Opt. 42, 7103-7116 (2003).
[CrossRef]

G. P. Gobbi, F. Barnaba, R. Van Dingenen, J. P. Putaud, M. Mircea, and M. C. Facchini, "Lidar and in situ observations of continental and Saharan aerosols: closure analysis of particles' optical and physical properties," Atmos. Chem. Phys. 3, 2161-2172 (2003).
[CrossRef]

K. Sassen, P. J. DeMott, J. M. Prospero, and M. R. Poellot, "Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results," Ann. Geophys. Res. Lett. 30, 1633-1636 (2003).
[CrossRef]

2002 (2)

S. E. Wood, M. B. Baker, and B. D. Swanson, "Instrument for studies of homogeneous and heterogeneous ice nucleation in free-falling supercooled water droplets," Rev. Sci. lnstrum. 73, 3988-3996 (2002).
[CrossRef]

G. M. McFarquhar, P. Yang, A. Macke, and A. J. Baran, "A new representation of the single-scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions," J. Atmos. Sci. 59, 2458-2478 (2002).
[CrossRef]

2001 (3)

S. Havemann and A. J. Baran, "Extension of T-matrix to scattering of electromagnetic plane waves by non-axisymmetric dielectric particles: application to hexagonal ice cylinders," J. Quant. Spectrosc. Radiat. Transfer. 70, 139-158 (2001).
[CrossRef]

E. Hirst, P. H. Kaye, R. S. Greenaway, P. Field, and D. W. Johnson, "Discrimination of micrometer-sized ice and super-cooled droplets in mixed-phase cloud," Atmos. Environ. 35, 33-47 (2001).
[CrossRef]

A. J. Baran, P. Yang, and S. Havemann, "Calculation of the single-scattering properties of randomly oriented hexagonal ice columns: a comparison of the T-matrix and the finite-difference time-domain methods," Appl. Opt. 40, 4376-4386 (2001).
[CrossRef]

2000 (3)

1998 (1)

M. I. Mishchenko and K. Sassen, "Depolarization of lidar returns by small ice crystals: an application to contrails," Geophys. Res. Lett. 25, 309-312 (1998).
[CrossRef]

1996 (1)

B. Krämer, M. Schwell, O. Hübner, H. Vortisch, T. Leisner, E. Rühl, H. Baumgärtel, and L. Wöste, "Homogeneous ice nucleation observed in single levitated micro droplets," Ber. Bunsenges. Phys. Chem. 100, 1911-1914 (1996).

1995 (2)

R. P. Lawson and R. H. Cormack, "Theoretical design and preliminary tests of two new particle spectrometers for cloud microphysics research," Atmos. Res. 35, 315-348 (1995).
[CrossRef]

M. I. Mishchenko and J. W. Hovenier, "Depolarization of light backscattered by randomly oriented nonspherical particles," Opt. Lett. 20, 1356-1358 (1995).
[CrossRef] [PubMed]

1989 (2)

1987 (1)

1985 (2)

1984 (1)

1982 (1)

1980 (1)

1979 (2)

S. Asano, "Light scattering properties of spheroidal particles," Appl. Opt. 18, 712-723 (1979).
[CrossRef] [PubMed]

K. Sassen and K. N. Liou, "Scattering of polarized laser light by water droplet, mixed-phase and ice crystals clouds. Parts I + II," J. Atmos. Sci. 36, 838-861 (1979).
[CrossRef]

1977 (1)

K. Sassen, "Ice crystal habit discrimination with the optical backscatter depolarization technique," J. Appl. Meteorol. 16, 425-431 (1977).
[CrossRef]

1974 (2)

K. Sassen, "Depolarization of laser light backscattered by artificial clouds," J. Appl. Meteorol. 13, 923-933 (1974).
[CrossRef]

N. Liou and H. Lahore, "Laser sensing of cloud composition: a backscattered depolarization technique," J. Appl. Meteorol. 13, 257-263 (1974).
[CrossRef]

1971 (1)

P. C. Watermann, "Symmetry, unitarity, and geometry in electromagnetic scattering," Phys. Rev. D 3, 825-839 (1971).
[CrossRef]

Asano, S.

Baker, M. B.

S. E. Wood, M. B. Baker, and B. D. Swanson, "Instrument for studies of homogeneous and heterogeneous ice nucleation in free-falling supercooled water droplets," Rev. Sci. lnstrum. 73, 3988-3996 (2002).
[CrossRef]

Baran, A. J.

S. Havemann, A. J. Baran, and J. M. Edwards, "Implementation of the T-matrix method on a massively parallel machine: a comparison of hexagonal ice cylinder single-scattering properties using the T-matrix and improved geometric optics methods," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 707-720 (2003).
[CrossRef]

G. M. McFarquhar, P. Yang, A. Macke, and A. J. Baran, "A new representation of the single-scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions," J. Atmos. Sci. 59, 2458-2478 (2002).
[CrossRef]

S. Havemann and A. J. Baran, "Extension of T-matrix to scattering of electromagnetic plane waves by non-axisymmetric dielectric particles: application to hexagonal ice cylinders," J. Quant. Spectrosc. Radiat. Transfer. 70, 139-158 (2001).
[CrossRef]

A. J. Baran, P. Yang, and S. Havemann, "Calculation of the single-scattering properties of randomly oriented hexagonal ice columns: a comparison of the T-matrix and the finite-difference time-domain methods," Appl. Opt. 40, 4376-4386 (2001).
[CrossRef]

Barnaba, F.

G. P. Gobbi, F. Barnaba, R. Van Dingenen, J. P. Putaud, M. Mircea, and M. C. Facchini, "Lidar and in situ observations of continental and Saharan aerosols: closure analysis of particles' optical and physical properties," Atmos. Chem. Phys. 3, 2161-2172 (2003).
[CrossRef]

G. P. Gobbi, F. Barnaba, R. Giorgi, and A. Santacasa, "Altitude-resolved properties of a Saharan dust event over the Mediterranean," Atmos. Environ. 34, 5119-5127 (2000).
[CrossRef]

Baum, B. A.

P. Yang, Y. X. Hu, D. M. Winker, J. Zhao, C. A. Hosteller, L. Poole, B. A. Baum, M. I. Mishchenko, and J. Reichardt, "Enhanced lidar backscattering by quasi-horizontally oriented ice crystal plates in cirrus clouds," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 1139-1157 (2003).
[CrossRef]

Baumgärtel, H.

B. Krämer, M. Schwell, O. Hübner, H. Vortisch, T. Leisner, E. Rühl, H. Baumgärtel, and L. Wöste, "Homogeneous ice nucleation observed in single levitated micro droplets," Ber. Bunsenges. Phys. Chem. 100, 1911-1914 (1996).

Büttner, S.

S. Büttner, "Steulichtexperimente an asphärischen Aerosolpartikeln: depolarization und Vorwärtsstreuverhältnis von Mineralstaub und Eiskristallen," Dissertation FZKA 6989, Forschungszentrum Karlsruhe (2004).

Cai, Q.

Chen, B.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani. H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, "Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles," J. Geophys. Res. 108(D23), 8652, doi: (2003).
[CrossRef]

Cormack, R. H.

R. P. Lawson and R. H. Cormack, "Theoretical design and preliminary tests of two new particle spectrometers for cloud microphysics research," Atmos. Res. 35, 315-348 (1995).
[CrossRef]

DeMott, P. J.

K. Sassen, P. J. DeMott, J. M. Prospero, and M. R. Poellot, "Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results," Ann. Geophys. Res. Lett. 30, 1633-1636 (2003).
[CrossRef]

Edwards, J. M.

S. Havemann, A. J. Baran, and J. M. Edwards, "Implementation of the T-matrix method on a massively parallel machine: a comparison of hexagonal ice cylinder single-scattering properties using the T-matrix and improved geometric optics methods," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 707-720 (2003).
[CrossRef]

Facchini, M. C.

G. P. Gobbi, F. Barnaba, R. Van Dingenen, J. P. Putaud, M. Mircea, and M. C. Facchini, "Lidar and in situ observations of continental and Saharan aerosols: closure analysis of particles' optical and physical properties," Atmos. Chem. Phys. 3, 2161-2172 (2003).
[CrossRef]

Feichter, J.

U. Lohmann and J. Feichter, "Global indirect aerosol effects: a review," Atmos. Chem. Phys. Disc. 5, 715-737 (2005).
[CrossRef]

Field, P.

E. Hirst, P. H. Kaye, R. S. Greenaway, P. Field, and D. W. Johnson, "Discrimination of micrometer-sized ice and super-cooled droplets in mixed-phase cloud," Atmos. Environ. 35, 33-47 (2001).
[CrossRef]

Giorgi, R.

G. P. Gobbi, F. Barnaba, R. Giorgi, and A. Santacasa, "Altitude-resolved properties of a Saharan dust event over the Mediterranean," Atmos. Environ. 34, 5119-5127 (2000).
[CrossRef]

Gobbi, G. P.

G. P. Gobbi, F. Barnaba, R. Van Dingenen, J. P. Putaud, M. Mircea, and M. C. Facchini, "Lidar and in situ observations of continental and Saharan aerosols: closure analysis of particles' optical and physical properties," Atmos. Chem. Phys. 3, 2161-2172 (2003).
[CrossRef]

G. P. Gobbi, F. Barnaba, R. Giorgi, and A. Santacasa, "Altitude-resolved properties of a Saharan dust event over the Mediterranean," Atmos. Environ. 34, 5119-5127 (2000).
[CrossRef]

Greenaway, R. S.

E. Hirst, P. H. Kaye, R. S. Greenaway, P. Field, and D. W. Johnson, "Discrimination of micrometer-sized ice and super-cooled droplets in mixed-phase cloud," Atmos. Environ. 35, 33-47 (2001).
[CrossRef]

Hallett, J.

Havemann, S.

S. Havemann, A. J. Baran, and J. M. Edwards, "Implementation of the T-matrix method on a massively parallel machine: a comparison of hexagonal ice cylinder single-scattering properties using the T-matrix and improved geometric optics methods," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 707-720 (2003).
[CrossRef]

S. Havemann and A. J. Baran, "Extension of T-matrix to scattering of electromagnetic plane waves by non-axisymmetric dielectric particles: application to hexagonal ice cylinders," J. Quant. Spectrosc. Radiat. Transfer. 70, 139-158 (2001).
[CrossRef]

A. J. Baran, P. Yang, and S. Havemann, "Calculation of the single-scattering properties of randomly oriented hexagonal ice columns: a comparison of the T-matrix and the finite-difference time-domain methods," Appl. Opt. 40, 4376-4386 (2001).
[CrossRef]

Hirst, E.

E. Hirst, P. H. Kaye, R. S. Greenaway, P. Field, and D. W. Johnson, "Discrimination of micrometer-sized ice and super-cooled droplets in mixed-phase cloud," Atmos. Environ. 35, 33-47 (2001).
[CrossRef]

Hosteller, C. A.

P. Yang, Y. X. Hu, D. M. Winker, J. Zhao, C. A. Hosteller, L. Poole, B. A. Baum, M. I. Mishchenko, and J. Reichardt, "Enhanced lidar backscattering by quasi-horizontally oriented ice crystal plates in cirrus clouds," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 1139-1157 (2003).
[CrossRef]

Hovenier, J. W.

M. I. Mishchenko and J. W. Hovenier, "Depolarization of light backscattered by randomly oriented nonspherical particles," Opt. Lett. 20, 1356-1358 (1995).
[CrossRef] [PubMed]

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements and Applications (Academic, 2000).

Hu, Y. X.

P. Yang, Y. X. Hu, D. M. Winker, J. Zhao, C. A. Hosteller, L. Poole, B. A. Baum, M. I. Mishchenko, and J. Reichardt, "Enhanced lidar backscattering by quasi-horizontally oriented ice crystal plates in cirrus clouds," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 1139-1157 (2003).
[CrossRef]

Hübner, O.

B. Krämer, M. Schwell, O. Hübner, H. Vortisch, T. Leisner, E. Rühl, H. Baumgärtel, and L. Wöste, "Homogeneous ice nucleation observed in single levitated micro droplets," Ber. Bunsenges. Phys. Chem. 100, 1911-1914 (1996).

Irvine, W. M.

Iwasaka, Y.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani. H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, "Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles," J. Geophys. Res. 108(D23), 8652, doi: (2003).
[CrossRef]

Jayaweera, K.

Johnson, D. W.

E. Hirst, P. H. Kaye, R. S. Greenaway, P. Field, and D. W. Johnson, "Discrimination of micrometer-sized ice and super-cooled droplets in mixed-phase cloud," Atmos. Environ. 35, 33-47 (2001).
[CrossRef]

Kahnert, F. M.

F. M. Kahnert, "Numerical methods in electromagnetic scattering theory," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 775-824 (2003).
[CrossRef]

Kawahira, K.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani. H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, "Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles," J. Geophys. Res. 108(D23), 8652, doi: (2003).
[CrossRef]

Kaye, P. H.

E. Hirst, P. H. Kaye, R. S. Greenaway, P. Field, and D. W. Johnson, "Discrimination of micrometer-sized ice and super-cooled droplets in mixed-phase cloud," Atmos. Environ. 35, 33-47 (2001).
[CrossRef]

Kim, Y. S.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani. H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, "Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles," J. Geophys. Res. 108(D23), 8652, doi: (2003).
[CrossRef]

Krämer, B.

B. Krämer, M. Schwell, O. Hübner, H. Vortisch, T. Leisner, E. Rühl, H. Baumgärtel, and L. Wöste, "Homogeneous ice nucleation observed in single levitated micro droplets," Ber. Bunsenges. Phys. Chem. 100, 1911-1914 (1996).

Lahore, H.

N. Liou and H. Lahore, "Laser sensing of cloud composition: a backscattered depolarization technique," J. Appl. Meteorol. 13, 257-263 (1974).
[CrossRef]

Lawson, R. P.

R. P. Lawson and R. H. Cormack, "Theoretical design and preliminary tests of two new particle spectrometers for cloud microphysics research," Atmos. Res. 35, 315-348 (1995).
[CrossRef]

Leisner, T.

B. Krämer, M. Schwell, O. Hübner, H. Vortisch, T. Leisner, E. Rühl, H. Baumgärtel, and L. Wöste, "Homogeneous ice nucleation observed in single levitated micro droplets," Ber. Bunsenges. Phys. Chem. 100, 1911-1914 (1996).

Li, G.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani. H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, "Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles," J. Geophys. Res. 108(D23), 8652, doi: (2003).
[CrossRef]

Liou, K. N.

Q. Cai and K. N. Liou, "Polarized light scattering by hexagonal ice crystals: theory," Appl. Opt. 21, 3569-3580 (1982).
[CrossRef] [PubMed]

K. Sassen and K. N. Liou, "Scattering of polarized laser light by water droplet, mixed-phase and ice crystals clouds. Parts I + II," J. Atmos. Sci. 36, 838-861 (1979).
[CrossRef]

Liou, N.

N. Liou and H. Lahore, "Laser sensing of cloud composition: a backscattered depolarization technique," J. Appl. Meteorol. 13, 257-263 (1974).
[CrossRef]

Lohmann, U.

U. Lohmann and J. Feichter, "Global indirect aerosol effects: a review," Atmos. Chem. Phys. Disc. 5, 715-737 (2005).
[CrossRef]

O. Stetzer and U. Lohmann are preparing a manuscript to be called, "The Zurich Ice Nucleation Chamber (ZINC)--A new tool to investigate heterogeneous ice formation on atmospheric aerosols."

Lumme, K.

Macke, A.

G. M. McFarquhar, P. Yang, A. Macke, and A. J. Baran, "A new representation of the single-scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions," J. Atmos. Sci. 59, 2458-2478 (2002).
[CrossRef]

Mano, Y.

Matsuki, A.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani. H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, "Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles," J. Geophys. Res. 108(D23), 8652, doi: (2003).
[CrossRef]

Matsumura, T.

McFarquhar, G. M.

G. M. McFarquhar, P. Yang, A. Macke, and A. J. Baran, "A new representation of the single-scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions," J. Atmos. Sci. 59, 2458-2478 (2002).
[CrossRef]

Mircea, M.

G. P. Gobbi, F. Barnaba, R. Van Dingenen, J. P. Putaud, M. Mircea, and M. C. Facchini, "Lidar and in situ observations of continental and Saharan aerosols: closure analysis of particles' optical and physical properties," Atmos. Chem. Phys. 3, 2161-2172 (2003).
[CrossRef]

Mishchenko, M. I.

P. Yang, Y. X. Hu, D. M. Winker, J. Zhao, C. A. Hosteller, L. Poole, B. A. Baum, M. I. Mishchenko, and J. Reichardt, "Enhanced lidar backscattering by quasi-horizontally oriented ice crystal plates in cirrus clouds," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 1139-1157 (2003).
[CrossRef]

M. I. Mishchenko, "Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation," Appl. Opt. 39, 1026-1031 (2000).
[CrossRef]

N. T. Zakharova and M. I. Mishchenko, "Scattering properties of needlelike and platelike ice spheroids with moderate size parameters," Appl. Opt. 39, 5052-5057 (2000).
[CrossRef]

M. I. Mishchenko and K. Sassen, "Depolarization of lidar returns by small ice crystals: an application to contrails," Geophys. Res. Lett. 25, 309-312 (1998).
[CrossRef]

M. I. Mishchenko and J. W. Hovenier, "Depolarization of light backscattered by randomly oriented nonspherical particles," Opt. Lett. 20, 1356-1358 (1995).
[CrossRef] [PubMed]

M. I. Mishchenko, "T-matrix codes for computing electromagnetic scattering by nonspherical and aggregated particles," http://www.giss.nasa.gov/∼crmim/t_matrix.html.

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements and Applications (Academic, 2000).

Muinonen, K.

Nagai, T.

Nagatani, T.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani. H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, "Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles," J. Geophys. Res. 108(D23), 8652, doi: (2003).
[CrossRef]

Nakata, M. Nagatani. H.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani. H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, "Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles," J. Geophys. Res. 108(D23), 8652, doi: (2003).
[CrossRef]

Nakazato, M.

Peltoniemi, J.

Poellot, M. R.

K. Sassen, P. J. DeMott, J. M. Prospero, and M. R. Poellot, "Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results," Ann. Geophys. Res. Lett. 30, 1633-1636 (2003).
[CrossRef]

Poole, L.

P. Yang, Y. X. Hu, D. M. Winker, J. Zhao, C. A. Hosteller, L. Poole, B. A. Baum, M. I. Mishchenko, and J. Reichardt, "Enhanced lidar backscattering by quasi-horizontally oriented ice crystal plates in cirrus clouds," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 1139-1157 (2003).
[CrossRef]

Prospero, J. M.

K. Sassen, P. J. DeMott, J. M. Prospero, and M. R. Poellot, "Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results," Ann. Geophys. Res. Lett. 30, 1633-1636 (2003).
[CrossRef]

Putaud, J. P.

G. P. Gobbi, F. Barnaba, R. Van Dingenen, J. P. Putaud, M. Mircea, and M. C. Facchini, "Lidar and in situ observations of continental and Saharan aerosols: closure analysis of particles' optical and physical properties," Atmos. Chem. Phys. 3, 2161-2172 (2003).
[CrossRef]

Reichardt, J.

P. Yang, Y. X. Hu, D. M. Winker, J. Zhao, C. A. Hosteller, L. Poole, B. A. Baum, M. I. Mishchenko, and J. Reichardt, "Enhanced lidar backscattering by quasi-horizontally oriented ice crystal plates in cirrus clouds," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 1139-1157 (2003).
[CrossRef]

Rockwitz, K. D.

Rühl, E.

B. Krämer, M. Schwell, O. Hübner, H. Vortisch, T. Leisner, E. Rühl, H. Baumgärtel, and L. Wöste, "Homogeneous ice nucleation observed in single levitated micro droplets," Ber. Bunsenges. Phys. Chem. 100, 1911-1914 (1996).

Sakai, T.

Santacasa, A.

G. P. Gobbi, F. Barnaba, R. Giorgi, and A. Santacasa, "Altitude-resolved properties of a Saharan dust event over the Mediterranean," Atmos. Environ. 34, 5119-5127 (2000).
[CrossRef]

Sassen, K.

K. Sassen, P. J. DeMott, J. M. Prospero, and M. R. Poellot, "Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results," Ann. Geophys. Res. Lett. 30, 1633-1636 (2003).
[CrossRef]

M. I. Mishchenko and K. Sassen, "Depolarization of lidar returns by small ice crystals: an application to contrails," Geophys. Res. Lett. 25, 309-312 (1998).
[CrossRef]

K. Sassen and K. N. Liou, "Scattering of polarized laser light by water droplet, mixed-phase and ice crystals clouds. Parts I + II," J. Atmos. Sci. 36, 838-861 (1979).
[CrossRef]

K. Sassen, "Ice crystal habit discrimination with the optical backscatter depolarization technique," J. Appl. Meteorol. 16, 425-431 (1977).
[CrossRef]

K. Sassen, "Depolarization of laser light backscattered by artificial clouds," J. Appl. Meteorol. 13, 923-933 (1974).
[CrossRef]

Sato, M.

Schwell, M.

B. Krämer, M. Schwell, O. Hübner, H. Vortisch, T. Leisner, E. Rühl, H. Baumgärtel, and L. Wöste, "Homogeneous ice nucleation observed in single levitated micro droplets," Ber. Bunsenges. Phys. Chem. 100, 1911-1914 (1996).

Shen, Z.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani. H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, "Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles," J. Geophys. Res. 108(D23), 8652, doi: (2003).
[CrossRef]

Shi, G. Y.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani. H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, "Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles," J. Geophys. Res. 108(D23), 8652, doi: (2003).
[CrossRef]

Shibata, T.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani. H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, "Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles," J. Geophys. Res. 108(D23), 8652, doi: (2003).
[CrossRef]

Stetzer, O.

O. Stetzer and U. Lohmann are preparing a manuscript to be called, "The Zurich Ice Nucleation Chamber (ZINC)--A new tool to investigate heterogeneous ice formation on atmospheric aerosols."

Swanson, B. D.

S. E. Wood, M. B. Baker, and B. D. Swanson, "Instrument for studies of homogeneous and heterogeneous ice nucleation in free-falling supercooled water droplets," Rev. Sci. lnstrum. 73, 3988-3996 (2002).
[CrossRef]

Takano, Y.

Travis, L. D.

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements and Applications (Academic, 2000).

Trochkine, D.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani. H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, "Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles," J. Geophys. Res. 108(D23), 8652, doi: (2003).
[CrossRef]

Vali, G.

G. Vali, "Atmospheric ice nucleation--a review," J. Rech. Atmos. 19, 105-115 (1985).

Van Dingenen, R.

G. P. Gobbi, F. Barnaba, R. Van Dingenen, J. P. Putaud, M. Mircea, and M. C. Facchini, "Lidar and in situ observations of continental and Saharan aerosols: closure analysis of particles' optical and physical properties," Atmos. Chem. Phys. 3, 2161-2172 (2003).
[CrossRef]

Vortisch, H.

B. Krämer, M. Schwell, O. Hübner, H. Vortisch, T. Leisner, E. Rühl, H. Baumgärtel, and L. Wöste, "Homogeneous ice nucleation observed in single levitated micro droplets," Ber. Bunsenges. Phys. Chem. 100, 1911-1914 (1996).

Warren, S. G.

Watermann, P. C.

P. C. Watermann, "Symmetry, unitarity, and geometry in electromagnetic scattering," Phys. Rev. D 3, 825-839 (1971).
[CrossRef]

Winker, D. M.

P. Yang, Y. X. Hu, D. M. Winker, J. Zhao, C. A. Hosteller, L. Poole, B. A. Baum, M. I. Mishchenko, and J. Reichardt, "Enhanced lidar backscattering by quasi-horizontally oriented ice crystal plates in cirrus clouds," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 1139-1157 (2003).
[CrossRef]

Wood, S. E.

S. E. Wood, M. B. Baker, and B. D. Swanson, "Instrument for studies of homogeneous and heterogeneous ice nucleation in free-falling supercooled water droplets," Rev. Sci. lnstrum. 73, 3988-3996 (2002).
[CrossRef]

Wöste, L.

B. Krämer, M. Schwell, O. Hübner, H. Vortisch, T. Leisner, E. Rühl, H. Baumgärtel, and L. Wöste, "Homogeneous ice nucleation observed in single levitated micro droplets," Ber. Bunsenges. Phys. Chem. 100, 1911-1914 (1996).

Yamada, M.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani. H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, "Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles," J. Geophys. Res. 108(D23), 8652, doi: (2003).
[CrossRef]

Yang, P.

P. Yang, Y. X. Hu, D. M. Winker, J. Zhao, C. A. Hosteller, L. Poole, B. A. Baum, M. I. Mishchenko, and J. Reichardt, "Enhanced lidar backscattering by quasi-horizontally oriented ice crystal plates in cirrus clouds," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 1139-1157 (2003).
[CrossRef]

G. M. McFarquhar, P. Yang, A. Macke, and A. J. Baran, "A new representation of the single-scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions," J. Atmos. Sci. 59, 2458-2478 (2002).
[CrossRef]

A. J. Baran, P. Yang, and S. Havemann, "Calculation of the single-scattering properties of randomly oriented hexagonal ice columns: a comparison of the T-matrix and the finite-difference time-domain methods," Appl. Opt. 40, 4376-4386 (2001).
[CrossRef]

Young, K. C.

K. C. Young, Microphysical Processes in Clouds (Oxford U. Press, 1993).

Zakharova, N. T.

Zhang, D.

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani. H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, "Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles," J. Geophys. Res. 108(D23), 8652, doi: (2003).
[CrossRef]

Zhao, J.

P. Yang, Y. X. Hu, D. M. Winker, J. Zhao, C. A. Hosteller, L. Poole, B. A. Baum, M. I. Mishchenko, and J. Reichardt, "Enhanced lidar backscattering by quasi-horizontally oriented ice crystal plates in cirrus clouds," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 1139-1157 (2003).
[CrossRef]

Ann. Geophys. Res. Lett. (1)

K. Sassen, P. J. DeMott, J. M. Prospero, and M. R. Poellot, "Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results," Ann. Geophys. Res. Lett. 30, 1633-1636 (2003).
[CrossRef]

Appl. Opt. (11)

S. Asano and M. Sato, "Light scattering by randomly oriented spheroidal particles," Appl. Opt. 19, 962-974 (1980).
[CrossRef] [PubMed]

S. Asano, "Light scattering properties of spheroidal particles," Appl. Opt. 18, 712-723 (1979).
[CrossRef] [PubMed]

K. Muinonen, K. Lumme, J. Peltoniemi, and W. M. Irvine, "Light scattering by randomly oriented crystals," Appl. Opt. 28, 3051-3060 (1989).
[CrossRef] [PubMed]

Y. Takano and K. Jayaweera, "Scattering phase matrix for hexagonal ice crystals computed from ray optics," Appl. Opt. 24, 3254-3263 (1985).
[CrossRef] [PubMed]

Q. Cai and K. N. Liou, "Polarized light scattering by hexagonal ice crystals: theory," Appl. Opt. 21, 3569-3580 (1982).
[CrossRef] [PubMed]

K. D. Rockwitz, "Scattering properties of horizontally oriented ice crystal columns in cirrus clouds. Part 1," Appl. Opt. 28, 4103-4110 (1989).
[CrossRef] [PubMed]

A. J. Baran, P. Yang, and S. Havemann, "Calculation of the single-scattering properties of randomly oriented hexagonal ice columns: a comparison of the T-matrix and the finite-difference time-domain methods," Appl. Opt. 40, 4376-4386 (2001).
[CrossRef]

M. I. Mishchenko, "Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation," Appl. Opt. 39, 1026-1031 (2000).
[CrossRef]

T. Sakai, T. Nagai, M. Nakazato, Y. Mano, and T. Matsumura, "Ice clouds and Asian dust studied with lidar measurements of particle extinction-to-backscatter ratio, particle depolarization, and water-vapor mixing ratio over Tsukuba," Appl. Opt. 42, 7103-7116 (2003).
[CrossRef]

S. G. Warren, "Optical constants of ice from the ultraviolet to the microwave," Appl. Opt. 23, 1206-1225 (1984).
[CrossRef] [PubMed]

N. T. Zakharova and M. I. Mishchenko, "Scattering properties of needlelike and platelike ice spheroids with moderate size parameters," Appl. Opt. 39, 5052-5057 (2000).
[CrossRef]

Atmos. Chem. Phys. (1)

G. P. Gobbi, F. Barnaba, R. Van Dingenen, J. P. Putaud, M. Mircea, and M. C. Facchini, "Lidar and in situ observations of continental and Saharan aerosols: closure analysis of particles' optical and physical properties," Atmos. Chem. Phys. 3, 2161-2172 (2003).
[CrossRef]

Atmos. Chem. Phys. Disc. (1)

U. Lohmann and J. Feichter, "Global indirect aerosol effects: a review," Atmos. Chem. Phys. Disc. 5, 715-737 (2005).
[CrossRef]

Atmos. Environ. (2)

E. Hirst, P. H. Kaye, R. S. Greenaway, P. Field, and D. W. Johnson, "Discrimination of micrometer-sized ice and super-cooled droplets in mixed-phase cloud," Atmos. Environ. 35, 33-47 (2001).
[CrossRef]

G. P. Gobbi, F. Barnaba, R. Giorgi, and A. Santacasa, "Altitude-resolved properties of a Saharan dust event over the Mediterranean," Atmos. Environ. 34, 5119-5127 (2000).
[CrossRef]

Atmos. Res. (1)

R. P. Lawson and R. H. Cormack, "Theoretical design and preliminary tests of two new particle spectrometers for cloud microphysics research," Atmos. Res. 35, 315-348 (1995).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

B. Krämer, M. Schwell, O. Hübner, H. Vortisch, T. Leisner, E. Rühl, H. Baumgärtel, and L. Wöste, "Homogeneous ice nucleation observed in single levitated micro droplets," Ber. Bunsenges. Phys. Chem. 100, 1911-1914 (1996).

Geophys. Res. Lett. (1)

M. I. Mishchenko and K. Sassen, "Depolarization of lidar returns by small ice crystals: an application to contrails," Geophys. Res. Lett. 25, 309-312 (1998).
[CrossRef]

J. Appl. Meteorol. (3)

N. Liou and H. Lahore, "Laser sensing of cloud composition: a backscattered depolarization technique," J. Appl. Meteorol. 13, 257-263 (1974).
[CrossRef]

K. Sassen, "Depolarization of laser light backscattered by artificial clouds," J. Appl. Meteorol. 13, 923-933 (1974).
[CrossRef]

K. Sassen, "Ice crystal habit discrimination with the optical backscatter depolarization technique," J. Appl. Meteorol. 16, 425-431 (1977).
[CrossRef]

J. Atmos. Sci. (2)

K. Sassen and K. N. Liou, "Scattering of polarized laser light by water droplet, mixed-phase and ice crystals clouds. Parts I + II," J. Atmos. Sci. 36, 838-861 (1979).
[CrossRef]

G. M. McFarquhar, P. Yang, A. Macke, and A. J. Baran, "A new representation of the single-scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions," J. Atmos. Sci. 59, 2458-2478 (2002).
[CrossRef]

J. Geophys. Res. (1)

Y. Iwasaka, T. Shibata, T. Nagatani, G. Y. Shi, Y. S. Kim, A. Matsuki, D. Trochkine, D. Zhang, M. Yamada, M. Nagatani. H. Nakata, Z. Shen, G. Li, B. Chen, and K. Kawahira, "Large depolarization ratio of free tropospheric aerosols over the Taklamakan Desert revealed by lidar measurements: possible diffusion and transport of dust particles," J. Geophys. Res. 108(D23), 8652, doi: (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Quant. Spectrosc. Radiat. Transfer. (4)

P. Yang, Y. X. Hu, D. M. Winker, J. Zhao, C. A. Hosteller, L. Poole, B. A. Baum, M. I. Mishchenko, and J. Reichardt, "Enhanced lidar backscattering by quasi-horizontally oriented ice crystal plates in cirrus clouds," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 1139-1157 (2003).
[CrossRef]

S. Havemann and A. J. Baran, "Extension of T-matrix to scattering of electromagnetic plane waves by non-axisymmetric dielectric particles: application to hexagonal ice cylinders," J. Quant. Spectrosc. Radiat. Transfer. 70, 139-158 (2001).
[CrossRef]

S. Havemann, A. J. Baran, and J. M. Edwards, "Implementation of the T-matrix method on a massively parallel machine: a comparison of hexagonal ice cylinder single-scattering properties using the T-matrix and improved geometric optics methods," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 707-720 (2003).
[CrossRef]

F. M. Kahnert, "Numerical methods in electromagnetic scattering theory," J. Quant. Spectrosc. Radiat. Transfer. 79-80, 775-824 (2003).
[CrossRef]

J. Rech. Atmos. (1)

G. Vali, "Atmospheric ice nucleation--a review," J. Rech. Atmos. 19, 105-115 (1985).

Opt. Lett. (1)

Phys. Rev. D (1)

P. C. Watermann, "Symmetry, unitarity, and geometry in electromagnetic scattering," Phys. Rev. D 3, 825-839 (1971).
[CrossRef]

Rev. Sci. lnstrum. (1)

S. E. Wood, M. B. Baker, and B. D. Swanson, "Instrument for studies of homogeneous and heterogeneous ice nucleation in free-falling supercooled water droplets," Rev. Sci. lnstrum. 73, 3988-3996 (2002).
[CrossRef]

Other (6)

Intergovernmental Panel on Climate Change, IPCC Third Assessment Report (Cambridge U. Press, 200l).

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles: Theory, Measurements and Applications (Academic, 2000).

S. Büttner, "Steulichtexperimente an asphärischen Aerosolpartikeln: depolarization und Vorwärtsstreuverhältnis von Mineralstaub und Eiskristallen," Dissertation FZKA 6989, Forschungszentrum Karlsruhe (2004).

M. I. Mishchenko, "T-matrix codes for computing electromagnetic scattering by nonspherical and aggregated particles," http://www.giss.nasa.gov/∼crmim/t_matrix.html.

O. Stetzer and U. Lohmann are preparing a manuscript to be called, "The Zurich Ice Nucleation Chamber (ZINC)--A new tool to investigate heterogeneous ice formation on atmospheric aerosols."

K. C. Young, Microphysical Processes in Clouds (Oxford U. Press, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Laboratory coordinate system.

Fig. 2
Fig. 2

Euler angles of rotation α and β transforming the laboratory frame L into the particle frame of the scattering particle P { x , y , z } .

Fig. 3
Fig. 3

Visualization of the regular cylindrical projection. α and β are the Euler angles. The areas for small and large values of β are actually smaller than the ones for β around 90°.

Fig. 4
Fig. 4

Parallel depolarization ratio ( δ ) for cylinders with an aspect ratio χ = 1 . The panels represent δ for different particle diameters as a function of the orientation of the particle given by the Euler angles α and β. The areas of the figures are nonconservative (see text for details).

Fig. 5
Fig. 5

Peprendicular depolarization ratio ( δ ) as a function of the orientation of the particle given by the Euler angles α and β for cylinders of diameter d = 2   μm and aspect ratio χ = 1 . The areas of the figures are nonconservative (see text for details).

Fig. 6
Fig. 6

Perpendicular depolarization ratio ( δ ) for cylinders with an aspect ratio χ = 1 . The panels represent δ for different particle diameters as a function of the orientation of the particle given by the Euler angles α and β. The areas of the figures are nonconservative (see text for details).

Fig. 7
Fig. 7

Occurrence of the depolarization ratio δ considering an isometric ( χ = 1 ) ice crystal with a diameter of 2   μm .

Fig. 8
Fig. 8

Parallel depolarization ratio for particles with d = 2   μm for different aspects ratios as a function of the orientation of the particle given by the Euler angles α and β. The areas of the figures are nonconservative (see text for details).

Fig. 9
Fig. 9

Evolution of the mean depolarization ratio at θ = 175 ° and 180° with increasing particle size parameter x = π d / λ for a wavelength of 407   nm . The black triangles show the results of Mishchenko and Sassen [19] for randomly oriented cylinders with χ = 1.0 and λ = 532   nm . Because they used the typical lidar definition of the depolarization δ L = I / I , the values are converted into δ avg using δ avg = δ L / ( 1 + δ L ) . The vertical bars refer to ± the variance.

Fig. 10
Fig. 10

Evolution of the mean depolarization ratio with increasing aspect ratio. The black triangles show the results of Mishchenko and Sassen [19] for randomly oriented cylinders with d = 2   μm . Because they used the typical lidar definition of the depolarization δ L = I / I , the values are converted into δ avg using δ avg = δ L / ( 1 + δ L ) . The vertical bars refer to ± the variance.

Tables (1)

Tables Icon

Table 1 Relative Occurrence of Particles with a Depolarization Ratio of δ lim as a Function of Size, Aspect Ratio, and δ lim

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I = [ I Q U V ] .
δ = I s c a I s c a + I s c a .
[ I s c a Q s c a ] = 1 R 2 [ Z 11 Z 12 Z 21 Z 22 ] [ I i n c Q i n c ] ,
{ I s c a = I s c a + I s c a Q s c a = I s c a I s c a .
δ = I s c a I s c a = Z 11 + Z 12 Z 21 Z 22 2 ( Z 11 + Z 12 ) .
δ = I s c a I s c a = Z 11 Z 12 + Z 21 Z 22 2 ( Z 11 Z 12 ) .
M β = | sin ( β ) | ,
δ avg = 1 β M β α β δ ( α , β ) M β .

Metrics