Abstract

Results of the depolarization ratio (δ) of single ice particles in fixed orientations are presented to determine whether discrimination between nonspherical ice crystals (causing depolarization) and spherical water droplets (inducing no depolarization) can be made. A T-matrix method is used to compute δ over a range of particle diameters from 0.13 to 4  μm and aspect ratios χ=d/h (d is the diameter and h the height of the particle) from 0.3 to 3, where ice crystals are assumed to have a circular cylindrical shape. The depolarization ratio is primarily dependent on the orientation of the particle. Some orientations return no depolarization, whereas others generate values reaching almost δ=1. Considering the depolarization averaged over all orientations, a dependence of δ with the particle size is observed where values close to 0.25 are reached. No strong influence of the aspect ratio on the depolarization for a given particle size of 2  μm is evident, as values remain in a range between 0.2 and 0.3.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription