Abstract

Atmospheric line-of-sight (LOS) wind measurement by means of incoherent Cabannes– Mie lidar with three frequency analyzers, two double-edge Fabry–Perot interferometers, one at 1064  nm (IR-FPI) and another at 355   nm (UV-FPI), as well as an iodine vapor filter (IVF) at 532   nm, utilizing either a single absorption edge, single edge (se-IVF), or both absorption edges, double edge (de-IVF), was considered in a companion paper [Appl. Opt. 46, 4434 (2007)], assuming known atmospheric temperature and aerosol mixing ratio, R b. The effects of temperature and aerosol variations on the uncertainty of LOS wind measurements are investigated and it is found that while the effect of temperature variation is small, the variation in Rb can cause significant errors in wind measurements with IVF systems. Thus the means to incorporate a credible determination of Rb into the wind measurement are presented as well as an assessment of the impact on wind measurement uncertainty. Unlike with IVF methods, researchers can take advantage of design flexibility with FPI methods to desensitize either molecular scattering for IR-FPI or aerosol scattering for UV-FPI. The additional wind measurement uncertainty caused by Rb variation with FPI methods is thus negligible for these configurations. Assuming 100,000 photons from Cabannes scattering, and accounting for the R b measurement incorporated into the IVF method in this paper, it is found that the lowest wind uncertainty at low wind speeds in aerosol-free air is still with UV-FPI, 32% lower than with de-IVF. For 0.05<Rb<0.07, the LOS wind uncertainty is lowest with de-IVF, and for Rb>0.07, the IR-FPI outperforms all other methods. In addition to LOS wind uncertainty comparison under high wind speed conditions, the need of an appropriate and readily available narrowband filter for operating the wind lidar at visible wavelengths under sunlit condition is discussed; with such a filter the degradation of LOS wind measurement attributable to clear sky background is estimated to be 5% or less for practical lidar systems.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription