Abstract

We have developed photoacoustic spectroscopy with a piezofilm. A piezofilm is a piezoelectric element made from plastic polyvinylidene fluoride having piezoelectrical effect. Photoacoustic spectra (375675  nm) of water, dye aqueous solution, and benzene, are measured with a xenon lamp. The piezofilm is directly immersed in the liquid samples for sensitive detection of the signal. The sensitivity of the method is shown to be as high as for photothermal deflection spectroscopy. Compared with the conventional methods such as photoacoustic spectroscopy with a piezoceramic and photothermal spectroscopy with a double beam configuration, the present method is favorable from its handy and simpler experimental setup.

© 2007 Optical Society of America

Full Article  |  PDF Article

Corrections

Yugo Nosaka and Eiji Tokunaga, "Development of photoacoustic spectroscopy with a piezofilm: errata," Appl. Opt. 46, 7267-7267 (2007)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-46-29-7267

References

  • View by:
  • |
  • |
  • |

  1. A. C. Tam, "Applications of photoacoustic sensing techniques," Rev. Mod. Phys. 58, 381-431 (1986).
    [CrossRef]
  2. T. Kitamori and T. Sawada, "Novel analytical and chemometric applications of photothermal spectroscopy," Spectrochim. Acta Rev. 14, 275-302 (1991).
  3. A. Rosencwaig, "Photoacoustic spectroscopy of solids," Opt. Commun. 7, 305-308 (1973).
    [CrossRef]
  4. M. Ohmukai and Y. Tsutsumi, "Characterization of porous silicon by means of photoacoustic spectroscopy," Thin Solid Films 302, 51-53 (1997).
    [CrossRef]
  5. T. Toyoda and R. Torai, "Degradation effect of porous silicon on photoacoustic and photoluminescence signal intensities with photoexcitation," Thin Solid Films 438, 137-141 (2003).
    [CrossRef]
  6. B. L. F. Daku and A. F. Prugger, "A microseismic piezofilm sensor," in Proceeding of the 2002 IEEE Canadian Conference on Electrical & Computer Engineering (IEEE, 2002), Vol. 1, pp. 483-487.
  7. V. S. Sudarshanam and K. Srinivasan, "Phases shift nonlinearity at resonance in a piezofilm-based fiber-optic phase modulator," J. Appl. Phys. 68, 1975-1980 (1990).
    [CrossRef]
  8. V. S. Sudarshanam and S. B. Desu, "Fiber-optic polarization and phase modulator utilizing transparent piezofilm with indium tin oxide electrodes," Appl. Opt. 34, 1177-1189 (1995).
    [CrossRef] [PubMed]
  9. S. Kikuchi and Y. Fukunishi, "Active flow control technique using piezo-film actuators applied to the sound generation by a cavity," in Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference (ASME/JSME, 1999).
  10. A. C. Tam and C. K. N. Patel, "Ultimate corrosion-resistant optoacoustic cell for spectroscopy of liquids," Opt. Lett. 5, 27-29 (1980).
    [CrossRef] [PubMed]
  11. A. C. Boccara, D. Fournier, W. Jackson, and N. M. Amer, "Sensitive photothermal deflection technique for measuring absorption in optically thin media," Opt. Lett. 5, 377-379 (1980).
    [CrossRef] [PubMed]
  12. W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, "Photothermal deflection spectroscopy and detection," Appl. Opt. 20, 1333-1344 (1981).
    [CrossRef] [PubMed]
  13. A. Harata, Q. Shen, and T. Sawada, "Photothermal applications of lasers: study of fast and ultrafast photothermal phenomena at metal-liquid interfaces," Annu. Rev. Phys. Chem. 50, 193-219 (1999).
    [CrossRef]
  14. N. M. Amer and W. B. Jackson, "Optical properties of defect states in a-Si:H," Semicond. Semimet. B 21, 83-112 (1984).
    [CrossRef]
  15. S. K. So, M. H. Chan, and L. M. Leung, "Photothermal deflection spectroscopy of polymer thin films," Appl. Phys. A 61, 159-161 (1995).
    [CrossRef]
  16. R. M. Pope and E. S. Fry, "Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements," Appl. Opt. 36, 8710-8723 (1997).
    [CrossRef]
  17. W. S. Pegau, D. Gray, J. Ronald, and V. Zaneveld, "Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity," Appl. Opt. 36, 6035-6046 (1997).
    [CrossRef] [PubMed]
  18. C. K. N. Patel and A. C. Tam, "Optical absorption coefficients of water," Nature 280, 302-304 (1979).
    [CrossRef]
  19. M. G. Ferruzzi, M. L. Failla, and S. J. Schwartz, "Sodium copper chlorophyllin: in vitro digestive stability and accumulation by caco-2 human intestinal cells," J. Agric. Food Chem. 50, 2173-2179 (2002).
    [CrossRef] [PubMed]
  20. H. Inoue, H. Yamashita, K. Furuya, Y. Nonomura, N. Yoshioka, and S. Li, "Determination of copper (II) chlorophyllin by reversed-phase high-performance liquid chromatography," J. Chromatogr. A 679, 99-104 (1994).
    [CrossRef]
  21. A. C. Tam, C. K. N. Patel, and R. J. Kerl, "Measurement of small absorptions in liquids," Opt. Lett. 4, 81-83 (1979).
    [CrossRef] [PubMed]
  22. J. Stone, "cw Raman fiber amplifier," Appl. Phys. Lett. 26, 163-165 (1975).
    [CrossRef]
  23. A. Rosencwaig and A. Gersho, "Theory of the photoacoustic effect with solids," J. Appl. Phys. 47, 64-69 (1976).
    [CrossRef]
  24. J. F. McClelland and R. N. Kniseley, "Signal saturation effects in photoacoustic spectroscopy with applicability to solid and liquid samples," Appl. Phys. Lett. 28, 467-469 (1976).
    [CrossRef]

2003 (1)

T. Toyoda and R. Torai, "Degradation effect of porous silicon on photoacoustic and photoluminescence signal intensities with photoexcitation," Thin Solid Films 438, 137-141 (2003).
[CrossRef]

2002 (1)

M. G. Ferruzzi, M. L. Failla, and S. J. Schwartz, "Sodium copper chlorophyllin: in vitro digestive stability and accumulation by caco-2 human intestinal cells," J. Agric. Food Chem. 50, 2173-2179 (2002).
[CrossRef] [PubMed]

1999 (1)

A. Harata, Q. Shen, and T. Sawada, "Photothermal applications of lasers: study of fast and ultrafast photothermal phenomena at metal-liquid interfaces," Annu. Rev. Phys. Chem. 50, 193-219 (1999).
[CrossRef]

1997 (3)

1995 (2)

1994 (1)

H. Inoue, H. Yamashita, K. Furuya, Y. Nonomura, N. Yoshioka, and S. Li, "Determination of copper (II) chlorophyllin by reversed-phase high-performance liquid chromatography," J. Chromatogr. A 679, 99-104 (1994).
[CrossRef]

1991 (1)

T. Kitamori and T. Sawada, "Novel analytical and chemometric applications of photothermal spectroscopy," Spectrochim. Acta Rev. 14, 275-302 (1991).

1990 (1)

V. S. Sudarshanam and K. Srinivasan, "Phases shift nonlinearity at resonance in a piezofilm-based fiber-optic phase modulator," J. Appl. Phys. 68, 1975-1980 (1990).
[CrossRef]

1986 (1)

A. C. Tam, "Applications of photoacoustic sensing techniques," Rev. Mod. Phys. 58, 381-431 (1986).
[CrossRef]

1984 (1)

N. M. Amer and W. B. Jackson, "Optical properties of defect states in a-Si:H," Semicond. Semimet. B 21, 83-112 (1984).
[CrossRef]

1981 (1)

1980 (2)

1979 (2)

A. C. Tam, C. K. N. Patel, and R. J. Kerl, "Measurement of small absorptions in liquids," Opt. Lett. 4, 81-83 (1979).
[CrossRef] [PubMed]

C. K. N. Patel and A. C. Tam, "Optical absorption coefficients of water," Nature 280, 302-304 (1979).
[CrossRef]

1976 (2)

A. Rosencwaig and A. Gersho, "Theory of the photoacoustic effect with solids," J. Appl. Phys. 47, 64-69 (1976).
[CrossRef]

J. F. McClelland and R. N. Kniseley, "Signal saturation effects in photoacoustic spectroscopy with applicability to solid and liquid samples," Appl. Phys. Lett. 28, 467-469 (1976).
[CrossRef]

1975 (1)

J. Stone, "cw Raman fiber amplifier," Appl. Phys. Lett. 26, 163-165 (1975).
[CrossRef]

1973 (1)

A. Rosencwaig, "Photoacoustic spectroscopy of solids," Opt. Commun. 7, 305-308 (1973).
[CrossRef]

Amer, N. M.

Boccara, A. C.

Chan, M. H.

S. K. So, M. H. Chan, and L. M. Leung, "Photothermal deflection spectroscopy of polymer thin films," Appl. Phys. A 61, 159-161 (1995).
[CrossRef]

Daku, B. L. F.

B. L. F. Daku and A. F. Prugger, "A microseismic piezofilm sensor," in Proceeding of the 2002 IEEE Canadian Conference on Electrical & Computer Engineering (IEEE, 2002), Vol. 1, pp. 483-487.

Desu, S. B.

Failla, M. L.

M. G. Ferruzzi, M. L. Failla, and S. J. Schwartz, "Sodium copper chlorophyllin: in vitro digestive stability and accumulation by caco-2 human intestinal cells," J. Agric. Food Chem. 50, 2173-2179 (2002).
[CrossRef] [PubMed]

Ferruzzi, M. G.

M. G. Ferruzzi, M. L. Failla, and S. J. Schwartz, "Sodium copper chlorophyllin: in vitro digestive stability and accumulation by caco-2 human intestinal cells," J. Agric. Food Chem. 50, 2173-2179 (2002).
[CrossRef] [PubMed]

Fournier, D.

Fry, E. S.

Fukunishi, Y.

S. Kikuchi and Y. Fukunishi, "Active flow control technique using piezo-film actuators applied to the sound generation by a cavity," in Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference (ASME/JSME, 1999).

Furuya, K.

H. Inoue, H. Yamashita, K. Furuya, Y. Nonomura, N. Yoshioka, and S. Li, "Determination of copper (II) chlorophyllin by reversed-phase high-performance liquid chromatography," J. Chromatogr. A 679, 99-104 (1994).
[CrossRef]

Gersho, A.

A. Rosencwaig and A. Gersho, "Theory of the photoacoustic effect with solids," J. Appl. Phys. 47, 64-69 (1976).
[CrossRef]

Gray, D.

Harata, A.

A. Harata, Q. Shen, and T. Sawada, "Photothermal applications of lasers: study of fast and ultrafast photothermal phenomena at metal-liquid interfaces," Annu. Rev. Phys. Chem. 50, 193-219 (1999).
[CrossRef]

Inoue, H.

H. Inoue, H. Yamashita, K. Furuya, Y. Nonomura, N. Yoshioka, and S. Li, "Determination of copper (II) chlorophyllin by reversed-phase high-performance liquid chromatography," J. Chromatogr. A 679, 99-104 (1994).
[CrossRef]

Jackson, W.

Jackson, W. B.

N. M. Amer and W. B. Jackson, "Optical properties of defect states in a-Si:H," Semicond. Semimet. B 21, 83-112 (1984).
[CrossRef]

W. B. Jackson, N. M. Amer, A. C. Boccara, and D. Fournier, "Photothermal deflection spectroscopy and detection," Appl. Opt. 20, 1333-1344 (1981).
[CrossRef] [PubMed]

Kerl, R. J.

Kikuchi, S.

S. Kikuchi and Y. Fukunishi, "Active flow control technique using piezo-film actuators applied to the sound generation by a cavity," in Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference (ASME/JSME, 1999).

Kitamori, T.

T. Kitamori and T. Sawada, "Novel analytical and chemometric applications of photothermal spectroscopy," Spectrochim. Acta Rev. 14, 275-302 (1991).

Kniseley, R. N.

J. F. McClelland and R. N. Kniseley, "Signal saturation effects in photoacoustic spectroscopy with applicability to solid and liquid samples," Appl. Phys. Lett. 28, 467-469 (1976).
[CrossRef]

Leung, L. M.

S. K. So, M. H. Chan, and L. M. Leung, "Photothermal deflection spectroscopy of polymer thin films," Appl. Phys. A 61, 159-161 (1995).
[CrossRef]

Li, S.

H. Inoue, H. Yamashita, K. Furuya, Y. Nonomura, N. Yoshioka, and S. Li, "Determination of copper (II) chlorophyllin by reversed-phase high-performance liquid chromatography," J. Chromatogr. A 679, 99-104 (1994).
[CrossRef]

McClelland, J. F.

J. F. McClelland and R. N. Kniseley, "Signal saturation effects in photoacoustic spectroscopy with applicability to solid and liquid samples," Appl. Phys. Lett. 28, 467-469 (1976).
[CrossRef]

Nonomura, Y.

H. Inoue, H. Yamashita, K. Furuya, Y. Nonomura, N. Yoshioka, and S. Li, "Determination of copper (II) chlorophyllin by reversed-phase high-performance liquid chromatography," J. Chromatogr. A 679, 99-104 (1994).
[CrossRef]

Ohmukai, M.

M. Ohmukai and Y. Tsutsumi, "Characterization of porous silicon by means of photoacoustic spectroscopy," Thin Solid Films 302, 51-53 (1997).
[CrossRef]

Patel, C. K. N.

Pegau, W. S.

Pope, R. M.

Prugger, A. F.

B. L. F. Daku and A. F. Prugger, "A microseismic piezofilm sensor," in Proceeding of the 2002 IEEE Canadian Conference on Electrical & Computer Engineering (IEEE, 2002), Vol. 1, pp. 483-487.

Ronald, J.

Rosencwaig, A.

A. Rosencwaig and A. Gersho, "Theory of the photoacoustic effect with solids," J. Appl. Phys. 47, 64-69 (1976).
[CrossRef]

A. Rosencwaig, "Photoacoustic spectroscopy of solids," Opt. Commun. 7, 305-308 (1973).
[CrossRef]

Sawada, T.

A. Harata, Q. Shen, and T. Sawada, "Photothermal applications of lasers: study of fast and ultrafast photothermal phenomena at metal-liquid interfaces," Annu. Rev. Phys. Chem. 50, 193-219 (1999).
[CrossRef]

T. Kitamori and T. Sawada, "Novel analytical and chemometric applications of photothermal spectroscopy," Spectrochim. Acta Rev. 14, 275-302 (1991).

Schwartz, S. J.

M. G. Ferruzzi, M. L. Failla, and S. J. Schwartz, "Sodium copper chlorophyllin: in vitro digestive stability and accumulation by caco-2 human intestinal cells," J. Agric. Food Chem. 50, 2173-2179 (2002).
[CrossRef] [PubMed]

Shen, Q.

A. Harata, Q. Shen, and T. Sawada, "Photothermal applications of lasers: study of fast and ultrafast photothermal phenomena at metal-liquid interfaces," Annu. Rev. Phys. Chem. 50, 193-219 (1999).
[CrossRef]

So, S. K.

S. K. So, M. H. Chan, and L. M. Leung, "Photothermal deflection spectroscopy of polymer thin films," Appl. Phys. A 61, 159-161 (1995).
[CrossRef]

Srinivasan, K.

V. S. Sudarshanam and K. Srinivasan, "Phases shift nonlinearity at resonance in a piezofilm-based fiber-optic phase modulator," J. Appl. Phys. 68, 1975-1980 (1990).
[CrossRef]

Stone, J.

J. Stone, "cw Raman fiber amplifier," Appl. Phys. Lett. 26, 163-165 (1975).
[CrossRef]

Sudarshanam, V. S.

V. S. Sudarshanam and S. B. Desu, "Fiber-optic polarization and phase modulator utilizing transparent piezofilm with indium tin oxide electrodes," Appl. Opt. 34, 1177-1189 (1995).
[CrossRef] [PubMed]

V. S. Sudarshanam and K. Srinivasan, "Phases shift nonlinearity at resonance in a piezofilm-based fiber-optic phase modulator," J. Appl. Phys. 68, 1975-1980 (1990).
[CrossRef]

Tam, A. C.

Torai, R.

T. Toyoda and R. Torai, "Degradation effect of porous silicon on photoacoustic and photoluminescence signal intensities with photoexcitation," Thin Solid Films 438, 137-141 (2003).
[CrossRef]

Toyoda, T.

T. Toyoda and R. Torai, "Degradation effect of porous silicon on photoacoustic and photoluminescence signal intensities with photoexcitation," Thin Solid Films 438, 137-141 (2003).
[CrossRef]

Tsutsumi, Y.

M. Ohmukai and Y. Tsutsumi, "Characterization of porous silicon by means of photoacoustic spectroscopy," Thin Solid Films 302, 51-53 (1997).
[CrossRef]

Yamashita, H.

H. Inoue, H. Yamashita, K. Furuya, Y. Nonomura, N. Yoshioka, and S. Li, "Determination of copper (II) chlorophyllin by reversed-phase high-performance liquid chromatography," J. Chromatogr. A 679, 99-104 (1994).
[CrossRef]

Yoshioka, N.

H. Inoue, H. Yamashita, K. Furuya, Y. Nonomura, N. Yoshioka, and S. Li, "Determination of copper (II) chlorophyllin by reversed-phase high-performance liquid chromatography," J. Chromatogr. A 679, 99-104 (1994).
[CrossRef]

Zaneveld, V.

Annu. Rev. Phys. Chem. (1)

A. Harata, Q. Shen, and T. Sawada, "Photothermal applications of lasers: study of fast and ultrafast photothermal phenomena at metal-liquid interfaces," Annu. Rev. Phys. Chem. 50, 193-219 (1999).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. A (1)

S. K. So, M. H. Chan, and L. M. Leung, "Photothermal deflection spectroscopy of polymer thin films," Appl. Phys. A 61, 159-161 (1995).
[CrossRef]

Appl. Phys. Lett. (2)

J. F. McClelland and R. N. Kniseley, "Signal saturation effects in photoacoustic spectroscopy with applicability to solid and liquid samples," Appl. Phys. Lett. 28, 467-469 (1976).
[CrossRef]

J. Stone, "cw Raman fiber amplifier," Appl. Phys. Lett. 26, 163-165 (1975).
[CrossRef]

J. Agric. Food Chem. (1)

M. G. Ferruzzi, M. L. Failla, and S. J. Schwartz, "Sodium copper chlorophyllin: in vitro digestive stability and accumulation by caco-2 human intestinal cells," J. Agric. Food Chem. 50, 2173-2179 (2002).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

A. Rosencwaig and A. Gersho, "Theory of the photoacoustic effect with solids," J. Appl. Phys. 47, 64-69 (1976).
[CrossRef]

V. S. Sudarshanam and K. Srinivasan, "Phases shift nonlinearity at resonance in a piezofilm-based fiber-optic phase modulator," J. Appl. Phys. 68, 1975-1980 (1990).
[CrossRef]

J. Chromatogr. A (1)

H. Inoue, H. Yamashita, K. Furuya, Y. Nonomura, N. Yoshioka, and S. Li, "Determination of copper (II) chlorophyllin by reversed-phase high-performance liquid chromatography," J. Chromatogr. A 679, 99-104 (1994).
[CrossRef]

Nature (1)

C. K. N. Patel and A. C. Tam, "Optical absorption coefficients of water," Nature 280, 302-304 (1979).
[CrossRef]

Opt. Commun. (1)

A. Rosencwaig, "Photoacoustic spectroscopy of solids," Opt. Commun. 7, 305-308 (1973).
[CrossRef]

Opt. Lett. (3)

Rev. Mod. Phys. (1)

A. C. Tam, "Applications of photoacoustic sensing techniques," Rev. Mod. Phys. 58, 381-431 (1986).
[CrossRef]

Semicond. Semimet. B (1)

N. M. Amer and W. B. Jackson, "Optical properties of defect states in a-Si:H," Semicond. Semimet. B 21, 83-112 (1984).
[CrossRef]

Spectrochim. Acta Rev. (1)

T. Kitamori and T. Sawada, "Novel analytical and chemometric applications of photothermal spectroscopy," Spectrochim. Acta Rev. 14, 275-302 (1991).

Thin Solid Films (2)

M. Ohmukai and Y. Tsutsumi, "Characterization of porous silicon by means of photoacoustic spectroscopy," Thin Solid Films 302, 51-53 (1997).
[CrossRef]

T. Toyoda and R. Torai, "Degradation effect of porous silicon on photoacoustic and photoluminescence signal intensities with photoexcitation," Thin Solid Films 438, 137-141 (2003).
[CrossRef]

Other (2)

B. L. F. Daku and A. F. Prugger, "A microseismic piezofilm sensor," in Proceeding of the 2002 IEEE Canadian Conference on Electrical & Computer Engineering (IEEE, 2002), Vol. 1, pp. 483-487.

S. Kikuchi and Y. Fukunishi, "Active flow control technique using piezo-film actuators applied to the sound generation by a cavity," in Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference (ASME/JSME, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental arrangement in PFPAS. The intensity of the irradiation light is 0.2 0.65 mW / cm 2 . The piezofilm is immersed in the liquid directly in the open glass cell of 20   mm × 10   mm × 38   mm in capacity. All the measurements are performed in a darkroom at room temperature.

Fig. 2
Fig. 2

Experimental arrangement in PBD spectroscopy. The intensity of the pump light is 0.4 0.9 mW / cm 2 . The average power of the probe light is 146.3   mW , and it is 5.6   mW at the PSD. PSD is a position sensitive detector. The cell is an open quartz cell of 20   mm × 20   mm × 38   mm capacity. All the measurements are performed in a darkroom at room temperature.

Fig. 3
Fig. 3

Measurement results by PFPAS for (a) distilled water, (b) CuChl aqueous solution (0.04 wt. %), and (c) benzene (100 wt. %). The signal intensity was divided by the irradiation light intensity.

Fig. 4
Fig. 4

Measurement results by (a) PFPAS and by (b) PBD for benzene (100 wt. %). The result is normalized so that signal intensity is 1 at 450 nm.

Fig. 5
Fig. 5

Generated heat distribution and the position of the piezofilm in the cell. The liquid surface is at x = 0 , the bottom of the cell is at x = d , and the end of the piezofilm is at x = d / 2 .

Fig. 6
Fig. 6

Results of calculation of Eq. (3). Solid curve for water with β = 0.035 cm 1 , dashed–dotted line for aqueous solution of CuChl (0.04 wt. %) with β = 17.3 cm 1 , and dotted curve for cobalt (II) chloride aqueous solution (0.1 M) with β = 0.07 cm 1 at 400   nm .

Fig. 7
Fig. 7

Frequency dependence of the signal intensity by PFPAS for water and CuChl aqueous solution (0.04 wt. %). The signal is in the unit of voltage by lock-in detection.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F ( x ) = 0 x d x β   exp ( β x ) exp ( x x L ) + x d d x β   exp ( β x ) exp ( x x L ) ,
L = 2 π ( α π f ) 1 / 2 .
Q ( f ) = 0 d / 2 d x F ( x ) .

Metrics