Abstract

A unified approach for calculation of information data stream parameters in the atmospheric optical communication channel is presented based on irradiance fluctuations of optical wave propagation through turbulence and on a generalized Ricean K-parameter distribution. The effects of turbulence are described via the well-known Kolmogorov scheme of turbulent structure relaxation in terms of stochastic scintillation theory described by the gamma–gamma distribution along with measurements of the values of the refractive index structure parameter, Cn2. The relation between the Ricean parameter K and the signal scintillation parameter σI2 is considered to develop a unified description of the corresponding probability density function (pdf) of signal fading within an atmospheric wireless communication link. Through the corresponding pdf and parameter K, signal data stream parameters such as the signal-to-noise ratio (SNR), bit error rate (BER), and capacity of the optical atmospheric channel (C) are estimated. Such an approach permits the reliable prediction of the effects of fading caused by different levels of turbulence and agrees with experimental data observed at different atmospheric levels, at the heights of both 100200  m and above 12km. It is shown that at heights of 100200  m, effects of fading, caused by turbulence, occur much more frequently than those at the heights of 12km. Data stream parameters such as channel capacity, SNR, and spectral efficiency become stronger at higher altitudes, while at the same time the BER becomes relatively negligible.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. H. Nielsen, "IPv6 for wireless networks," J. Wireless Personal Commun. 17, 237-247 (2001).
    [CrossRef]
  2. S. Ohmori, Y. Yamao, and N. Nakajima, "The future generation of mobile communications based on broadband access methods," J. Wireless Personal Commun. 17, 175-190 (2001).
    [CrossRef]
  3. G. M. Djuknic, J. Freidenfelds, and Y. Okunev, "Establishing wireless communication services via high-altitude aeronautical platforms: a concept whose time has come?" IEEE Commun. Mag. 35, 128-135 (1997).
    [CrossRef]
  4. Y. Hase, R. Miura, and S. Ohmori, "A novel broadband all-wireless access network using stratospheric radio platform," presented at the Forty-eighth Vehicular Technology Conference, Ottawa, Canada, 18-21 May 1998.
  5. P. Greiling and N. Ho, "Commercial satellite applications for heterojunction microelectronics technology," IEEE Trans. Microwave Theory Tech. 46, 734-738 (1998).
    [CrossRef]
  6. S. R. Saunders, Antennas and Propagation for Wireless Communication Systems (Wiley, 1999).
  7. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Optical Engineering Press, 1998).
  8. F. G. Stremler, Introduction to Communication Systems (Addison-Wesley, 1982).
  9. N. S. Kopeika, A System Engineering Approach to Imaging (SPIE Optical Engineering Press, 1998).
  10. A. Banakh and V. L. Mironov, LIDAR in a Turbulence Atmosphere (Artech House, 1987).
  11. W. Zhang, J. K. Tervonen, and E. T. Salonen, "Backward and forward scattering by the melting layer composed of spheroidal hydrometers at 5-100 GHz," IEEE Trans. Antennas Propag. 44, 1208-1219 (1996).
    [CrossRef]
  12. A. Macke and M. Mishchenko, "Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles," Appl. Opt. 35, 4291-4296 (1996).
    [CrossRef] [PubMed]
  13. E. A. Hovenac, "Calculation of far-field scattering from nonspherical particles using a geometrical optics approach," Appl. Opt. 30, 4739-4746 (1991).
    [CrossRef] [PubMed]
  14. J. D. Spinhirne and T. Nakajima, "Glory of clouds in the near infrared," Appl. Opt. 33, 4652-4662 (1994).
    [CrossRef] [PubMed]
  15. L. D. Duncan, J. D. Lindberg, and R. B. Loveland, An Empirical Model of the Vertical Structure of German Fogs, Rep. ASL-TR-0071 (U.S. Army Atmospheric Sciences Laboratory, 1980).
  16. L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Optical Engineering Press, 2001).
  17. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).
  18. A. S. Monin and A. M. Obukhov, "Basic law of turbulent mixing near the ground," Trans. Akad. Nauk. 24, 1963-1987 (1954).
  19. V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).
  20. D. Dion and P. Schwering, "On the analysis of atmospheric effects on electro-optical sensors in the marine surface layer," in Proceedings of the NATO-IRIS Conference, (IRIS, 1996), Vol. 41, pp. 305-322.
  21. A. Berk, L. S. Bernstein, and D. C. Robertson, MODTRAN: a moderate resolution model for LOWTRAN 7, Tech. Rep. GL-TR-89-0122 (Air Force Geophysics Laboratory, 1989).
  22. J. S. Accetta and D. L. Shumaker, eds., The Infrared and Electro-Optical Systems Handbook (Environmental Research Institute of Michigan and SPIE Optical Engineering Press, 1993), pp. 157-232.
  23. V. Thiermann and A. Kohnle, "A simple model for the structure constant of temperature fluctuations in the lower atmosphere," J. Phys. D 21, S37-S40 (1988).
    [CrossRef]
  24. D. Sadot and N. S. Kopeika, "Forecasting optical turbulence strength on basis of macroscale meteorology and aerosols: models and validation," Opt. Eng. 31, 200-212 (1992).
    [CrossRef]
  25. D. L. Hutt, "Modeling and measurements of atmospheric optical turbulence over land," Opt. Eng. 38, 1288-1295 (1999).
    [CrossRef]
  26. N. S. Kopeika, I. Kogan, R. Israeli, and I. Dinstein, "Prediction of image quality through atmosphere as a function of weather forecast," in Propagation Engineering, N. S. Kopeika and W. B. Miller, eds., Proc. SPIE 1115, 266-277 (1989).
  27. A. N. Kolmogorov, "The local structure of turbulence incompressible viscous fluid for very large Reynolds numbers," Reports Acad. Sci. USSR 30, 301-305 (1941).
  28. C. Y. Young, Y. V. Gilchrest, and B. R. Macon, "Turbulence induced beam spreading of higher order mode optical waves," Opt. Eng. 41, 1097-1103 (2002).
    [CrossRef]
  29. N. S. Kopeika, I. Kogan, R. Israeli, and I. Dinstein, "Prediction of image propagation quality through the atmosphere: The dependence of atmospheric modulation transfer function on weather," Opt. Eng. 29, 1427-1438 (1990).
    [CrossRef]
  30. L. C. Andrews, Special Functions of Mathematics for Engineers, 2nd ed. (SPIE Optical Engineering Press and Oxford U. Press, 1998).
  31. A. Papoulis, Probability Random Variables and Stochastic Process (McGraw-Hill, 1991).
  32. J. G. Proakis, Digital Communication, 4th ed. (McGraw-Hill, 2001).
  33. N. Blaunstein and J. B. Andersen, Multipath Phenomena in Cellular Networks (Artech House, 2002).
  34. M. A. Al-Habash, L. C. Andrews, and R. L. Philips, "Mathematical model for the irradiance probability density function of a laser beam propagation through turbulence media," Opt. Eng. 40, 1554-1562 (2001).
    [CrossRef]
  35. J. Anguita, I. Djordjevic, M. Neifeld, and B. Vasic, "Shannon capacities and error-correction codes for optical atmospheric turbulent channels," J. Opt. Netw. 4, 586-601 (2005).
    [CrossRef]
  36. S. Bendersky, N. Kopeika, and N. Blaunstein, "Atmospheric optical turbulence over land in Middle East coastal environments: prediction modeling and measurements," Appl. Opt. 43, 4070-4079 (2004).
    [CrossRef] [PubMed]
  37. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, 1998).
  38. A. Zilberman and N. S. Kopeika, "Aerosol and turbulence characterization at different heights in semi-arid regions," in Atmospheric Optical Modeling, Measurement, and Simulation, S. M. Doss-Hammel and A. Kohnle, eds., Proc. SPIE 5891, 129-140 (2005).
  39. J. L. Bufton, "Comparison of vertical profile turbulence structure with stellar observations," Appl. Opt. 12, 1785 (1973).
    [CrossRef] [PubMed]
  40. R. E. Good, B. J. Watkins, A. F. Quesada, J. H. Brown, and G. B. Loriot, "Radar and optical measurements of Cn2," Appl. Opt. 21, 3373 (1982).
    [CrossRef] [PubMed]
  41. J. Vernin, M. Crochet, M. Azouit, and O. Ghebrebrhan, "SCIDAR radar simultaneous measurements of atmospheric turbulence," Radio Sci. 25, 953-959 (1990).
    [CrossRef]
  42. S. S. Oliver and D. T. Gavel, "Tip-tilt compensation for astronomical imaging," J. Opt. Soc. Am. A 11, 368-378 (1994).
    [CrossRef]

2005 (2)

A. Zilberman and N. S. Kopeika, "Aerosol and turbulence characterization at different heights in semi-arid regions," in Atmospheric Optical Modeling, Measurement, and Simulation, S. M. Doss-Hammel and A. Kohnle, eds., Proc. SPIE 5891, 129-140 (2005).

J. Anguita, I. Djordjevic, M. Neifeld, and B. Vasic, "Shannon capacities and error-correction codes for optical atmospheric turbulent channels," J. Opt. Netw. 4, 586-601 (2005).
[CrossRef]

2004 (1)

2002 (1)

C. Y. Young, Y. V. Gilchrest, and B. R. Macon, "Turbulence induced beam spreading of higher order mode optical waves," Opt. Eng. 41, 1097-1103 (2002).
[CrossRef]

2001 (3)

M. A. Al-Habash, L. C. Andrews, and R. L. Philips, "Mathematical model for the irradiance probability density function of a laser beam propagation through turbulence media," Opt. Eng. 40, 1554-1562 (2001).
[CrossRef]

T. H. Nielsen, "IPv6 for wireless networks," J. Wireless Personal Commun. 17, 237-247 (2001).
[CrossRef]

S. Ohmori, Y. Yamao, and N. Nakajima, "The future generation of mobile communications based on broadband access methods," J. Wireless Personal Commun. 17, 175-190 (2001).
[CrossRef]

1999 (1)

D. L. Hutt, "Modeling and measurements of atmospheric optical turbulence over land," Opt. Eng. 38, 1288-1295 (1999).
[CrossRef]

1998 (1)

P. Greiling and N. Ho, "Commercial satellite applications for heterojunction microelectronics technology," IEEE Trans. Microwave Theory Tech. 46, 734-738 (1998).
[CrossRef]

1997 (1)

G. M. Djuknic, J. Freidenfelds, and Y. Okunev, "Establishing wireless communication services via high-altitude aeronautical platforms: a concept whose time has come?" IEEE Commun. Mag. 35, 128-135 (1997).
[CrossRef]

1996 (3)

W. Zhang, J. K. Tervonen, and E. T. Salonen, "Backward and forward scattering by the melting layer composed of spheroidal hydrometers at 5-100 GHz," IEEE Trans. Antennas Propag. 44, 1208-1219 (1996).
[CrossRef]

D. Dion and P. Schwering, "On the analysis of atmospheric effects on electro-optical sensors in the marine surface layer," in Proceedings of the NATO-IRIS Conference, (IRIS, 1996), Vol. 41, pp. 305-322.

A. Macke and M. Mishchenko, "Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles," Appl. Opt. 35, 4291-4296 (1996).
[CrossRef] [PubMed]

1994 (2)

1992 (1)

D. Sadot and N. S. Kopeika, "Forecasting optical turbulence strength on basis of macroscale meteorology and aerosols: models and validation," Opt. Eng. 31, 200-212 (1992).
[CrossRef]

1991 (1)

1990 (2)

N. S. Kopeika, I. Kogan, R. Israeli, and I. Dinstein, "Prediction of image propagation quality through the atmosphere: The dependence of atmospheric modulation transfer function on weather," Opt. Eng. 29, 1427-1438 (1990).
[CrossRef]

J. Vernin, M. Crochet, M. Azouit, and O. Ghebrebrhan, "SCIDAR radar simultaneous measurements of atmospheric turbulence," Radio Sci. 25, 953-959 (1990).
[CrossRef]

1989 (1)

N. S. Kopeika, I. Kogan, R. Israeli, and I. Dinstein, "Prediction of image quality through atmosphere as a function of weather forecast," in Propagation Engineering, N. S. Kopeika and W. B. Miller, eds., Proc. SPIE 1115, 266-277 (1989).

1988 (1)

V. Thiermann and A. Kohnle, "A simple model for the structure constant of temperature fluctuations in the lower atmosphere," J. Phys. D 21, S37-S40 (1988).
[CrossRef]

1982 (1)

1973 (1)

1954 (1)

A. S. Monin and A. M. Obukhov, "Basic law of turbulent mixing near the ground," Trans. Akad. Nauk. 24, 1963-1987 (1954).

1941 (1)

A. N. Kolmogorov, "The local structure of turbulence incompressible viscous fluid for very large Reynolds numbers," Reports Acad. Sci. USSR 30, 301-305 (1941).

Accetta, J. S.

J. S. Accetta and D. L. Shumaker, eds., The Infrared and Electro-Optical Systems Handbook (Environmental Research Institute of Michigan and SPIE Optical Engineering Press, 1993), pp. 157-232.

Al-Habash, M. A.

M. A. Al-Habash, L. C. Andrews, and R. L. Philips, "Mathematical model for the irradiance probability density function of a laser beam propagation through turbulence media," Opt. Eng. 40, 1554-1562 (2001).
[CrossRef]

Andersen, J. B.

N. Blaunstein and J. B. Andersen, Multipath Phenomena in Cellular Networks (Artech House, 2002).

Andrews, L. C.

M. A. Al-Habash, L. C. Andrews, and R. L. Philips, "Mathematical model for the irradiance probability density function of a laser beam propagation through turbulence media," Opt. Eng. 40, 1554-1562 (2001).
[CrossRef]

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Optical Engineering Press, 2001).

L. C. Andrews, Special Functions of Mathematics for Engineers, 2nd ed. (SPIE Optical Engineering Press and Oxford U. Press, 1998).

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Optical Engineering Press, 1998).

Anguita, J.

Azouit, M.

J. Vernin, M. Crochet, M. Azouit, and O. Ghebrebrhan, "SCIDAR radar simultaneous measurements of atmospheric turbulence," Radio Sci. 25, 953-959 (1990).
[CrossRef]

Banakh, A.

A. Banakh and V. L. Mironov, LIDAR in a Turbulence Atmosphere (Artech House, 1987).

Bendersky, S.

Berk, A.

A. Berk, L. S. Bernstein, and D. C. Robertson, MODTRAN: a moderate resolution model for LOWTRAN 7, Tech. Rep. GL-TR-89-0122 (Air Force Geophysics Laboratory, 1989).

Bernstein, L. S.

A. Berk, L. S. Bernstein, and D. C. Robertson, MODTRAN: a moderate resolution model for LOWTRAN 7, Tech. Rep. GL-TR-89-0122 (Air Force Geophysics Laboratory, 1989).

Blaunstein, N.

Brown, J. H.

Bufton, J. L.

Crochet, M.

J. Vernin, M. Crochet, M. Azouit, and O. Ghebrebrhan, "SCIDAR radar simultaneous measurements of atmospheric turbulence," Radio Sci. 25, 953-959 (1990).
[CrossRef]

Dinstein, I.

N. S. Kopeika, I. Kogan, R. Israeli, and I. Dinstein, "Prediction of image propagation quality through the atmosphere: The dependence of atmospheric modulation transfer function on weather," Opt. Eng. 29, 1427-1438 (1990).
[CrossRef]

N. S. Kopeika, I. Kogan, R. Israeli, and I. Dinstein, "Prediction of image quality through atmosphere as a function of weather forecast," in Propagation Engineering, N. S. Kopeika and W. B. Miller, eds., Proc. SPIE 1115, 266-277 (1989).

Dion, D.

D. Dion and P. Schwering, "On the analysis of atmospheric effects on electro-optical sensors in the marine surface layer," in Proceedings of the NATO-IRIS Conference, (IRIS, 1996), Vol. 41, pp. 305-322.

Djordjevic, I.

Djuknic, G. M.

G. M. Djuknic, J. Freidenfelds, and Y. Okunev, "Establishing wireless communication services via high-altitude aeronautical platforms: a concept whose time has come?" IEEE Commun. Mag. 35, 128-135 (1997).
[CrossRef]

Duncan, L. D.

L. D. Duncan, J. D. Lindberg, and R. B. Loveland, An Empirical Model of the Vertical Structure of German Fogs, Rep. ASL-TR-0071 (U.S. Army Atmospheric Sciences Laboratory, 1980).

Freidenfelds, J.

G. M. Djuknic, J. Freidenfelds, and Y. Okunev, "Establishing wireless communication services via high-altitude aeronautical platforms: a concept whose time has come?" IEEE Commun. Mag. 35, 128-135 (1997).
[CrossRef]

Gavel, D. T.

Ghebrebrhan, O.

J. Vernin, M. Crochet, M. Azouit, and O. Ghebrebrhan, "SCIDAR radar simultaneous measurements of atmospheric turbulence," Radio Sci. 25, 953-959 (1990).
[CrossRef]

Gilchrest, Y. V.

C. Y. Young, Y. V. Gilchrest, and B. R. Macon, "Turbulence induced beam spreading of higher order mode optical waves," Opt. Eng. 41, 1097-1103 (2002).
[CrossRef]

Good, R. E.

Greiling, P.

P. Greiling and N. Ho, "Commercial satellite applications for heterojunction microelectronics technology," IEEE Trans. Microwave Theory Tech. 46, 734-738 (1998).
[CrossRef]

Hardy, J. W.

J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, 1998).

Hase, Y.

Y. Hase, R. Miura, and S. Ohmori, "A novel broadband all-wireless access network using stratospheric radio platform," presented at the Forty-eighth Vehicular Technology Conference, Ottawa, Canada, 18-21 May 1998.

Ho, N.

P. Greiling and N. Ho, "Commercial satellite applications for heterojunction microelectronics technology," IEEE Trans. Microwave Theory Tech. 46, 734-738 (1998).
[CrossRef]

Hopen, C. Y.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Optical Engineering Press, 2001).

Hovenac, E. A.

Hutt, D. L.

D. L. Hutt, "Modeling and measurements of atmospheric optical turbulence over land," Opt. Eng. 38, 1288-1295 (1999).
[CrossRef]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

Israeli, R.

N. S. Kopeika, I. Kogan, R. Israeli, and I. Dinstein, "Prediction of image propagation quality through the atmosphere: The dependence of atmospheric modulation transfer function on weather," Opt. Eng. 29, 1427-1438 (1990).
[CrossRef]

N. S. Kopeika, I. Kogan, R. Israeli, and I. Dinstein, "Prediction of image quality through atmosphere as a function of weather forecast," in Propagation Engineering, N. S. Kopeika and W. B. Miller, eds., Proc. SPIE 1115, 266-277 (1989).

Kogan, I.

N. S. Kopeika, I. Kogan, R. Israeli, and I. Dinstein, "Prediction of image propagation quality through the atmosphere: The dependence of atmospheric modulation transfer function on weather," Opt. Eng. 29, 1427-1438 (1990).
[CrossRef]

N. S. Kopeika, I. Kogan, R. Israeli, and I. Dinstein, "Prediction of image quality through atmosphere as a function of weather forecast," in Propagation Engineering, N. S. Kopeika and W. B. Miller, eds., Proc. SPIE 1115, 266-277 (1989).

Kohnle, A.

V. Thiermann and A. Kohnle, "A simple model for the structure constant of temperature fluctuations in the lower atmosphere," J. Phys. D 21, S37-S40 (1988).
[CrossRef]

Kolmogorov, A. N.

A. N. Kolmogorov, "The local structure of turbulence incompressible viscous fluid for very large Reynolds numbers," Reports Acad. Sci. USSR 30, 301-305 (1941).

Kopeika, N.

Kopeika, N. S.

A. Zilberman and N. S. Kopeika, "Aerosol and turbulence characterization at different heights in semi-arid regions," in Atmospheric Optical Modeling, Measurement, and Simulation, S. M. Doss-Hammel and A. Kohnle, eds., Proc. SPIE 5891, 129-140 (2005).

D. Sadot and N. S. Kopeika, "Forecasting optical turbulence strength on basis of macroscale meteorology and aerosols: models and validation," Opt. Eng. 31, 200-212 (1992).
[CrossRef]

N. S. Kopeika, I. Kogan, R. Israeli, and I. Dinstein, "Prediction of image propagation quality through the atmosphere: The dependence of atmospheric modulation transfer function on weather," Opt. Eng. 29, 1427-1438 (1990).
[CrossRef]

N. S. Kopeika, I. Kogan, R. Israeli, and I. Dinstein, "Prediction of image quality through atmosphere as a function of weather forecast," in Propagation Engineering, N. S. Kopeika and W. B. Miller, eds., Proc. SPIE 1115, 266-277 (1989).

N. S. Kopeika, A System Engineering Approach to Imaging (SPIE Optical Engineering Press, 1998).

Lindberg, J. D.

L. D. Duncan, J. D. Lindberg, and R. B. Loveland, An Empirical Model of the Vertical Structure of German Fogs, Rep. ASL-TR-0071 (U.S. Army Atmospheric Sciences Laboratory, 1980).

Loriot, G. B.

Loveland, R. B.

L. D. Duncan, J. D. Lindberg, and R. B. Loveland, An Empirical Model of the Vertical Structure of German Fogs, Rep. ASL-TR-0071 (U.S. Army Atmospheric Sciences Laboratory, 1980).

Macke, A.

Macon, B. R.

C. Y. Young, Y. V. Gilchrest, and B. R. Macon, "Turbulence induced beam spreading of higher order mode optical waves," Opt. Eng. 41, 1097-1103 (2002).
[CrossRef]

Mironov, V. L.

A. Banakh and V. L. Mironov, LIDAR in a Turbulence Atmosphere (Artech House, 1987).

Mishchenko, M.

Miura, R.

Y. Hase, R. Miura, and S. Ohmori, "A novel broadband all-wireless access network using stratospheric radio platform," presented at the Forty-eighth Vehicular Technology Conference, Ottawa, Canada, 18-21 May 1998.

Monin, A. S.

A. S. Monin and A. M. Obukhov, "Basic law of turbulent mixing near the ground," Trans. Akad. Nauk. 24, 1963-1987 (1954).

Nakajima, N.

S. Ohmori, Y. Yamao, and N. Nakajima, "The future generation of mobile communications based on broadband access methods," J. Wireless Personal Commun. 17, 175-190 (2001).
[CrossRef]

Nakajima, T.

Neifeld, M.

Nielsen, T. H.

T. H. Nielsen, "IPv6 for wireless networks," J. Wireless Personal Commun. 17, 237-247 (2001).
[CrossRef]

Obukhov, A. M.

A. S. Monin and A. M. Obukhov, "Basic law of turbulent mixing near the ground," Trans. Akad. Nauk. 24, 1963-1987 (1954).

Ohmori, S.

S. Ohmori, Y. Yamao, and N. Nakajima, "The future generation of mobile communications based on broadband access methods," J. Wireless Personal Commun. 17, 175-190 (2001).
[CrossRef]

Y. Hase, R. Miura, and S. Ohmori, "A novel broadband all-wireless access network using stratospheric radio platform," presented at the Forty-eighth Vehicular Technology Conference, Ottawa, Canada, 18-21 May 1998.

Okunev, Y.

G. M. Djuknic, J. Freidenfelds, and Y. Okunev, "Establishing wireless communication services via high-altitude aeronautical platforms: a concept whose time has come?" IEEE Commun. Mag. 35, 128-135 (1997).
[CrossRef]

Oliver, S. S.

Papoulis, A.

A. Papoulis, Probability Random Variables and Stochastic Process (McGraw-Hill, 1991).

Philips, R. L.

M. A. Al-Habash, L. C. Andrews, and R. L. Philips, "Mathematical model for the irradiance probability density function of a laser beam propagation through turbulence media," Opt. Eng. 40, 1554-1562 (2001).
[CrossRef]

Phillips, R. L.

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Optical Engineering Press, 2001).

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Optical Engineering Press, 1998).

Proakis, J. G.

J. G. Proakis, Digital Communication, 4th ed. (McGraw-Hill, 2001).

Quesada, A. F.

Robertson, D. C.

A. Berk, L. S. Bernstein, and D. C. Robertson, MODTRAN: a moderate resolution model for LOWTRAN 7, Tech. Rep. GL-TR-89-0122 (Air Force Geophysics Laboratory, 1989).

Sadot, D.

D. Sadot and N. S. Kopeika, "Forecasting optical turbulence strength on basis of macroscale meteorology and aerosols: models and validation," Opt. Eng. 31, 200-212 (1992).
[CrossRef]

Salonen, E. T.

W. Zhang, J. K. Tervonen, and E. T. Salonen, "Backward and forward scattering by the melting layer composed of spheroidal hydrometers at 5-100 GHz," IEEE Trans. Antennas Propag. 44, 1208-1219 (1996).
[CrossRef]

Saunders, S. R.

S. R. Saunders, Antennas and Propagation for Wireless Communication Systems (Wiley, 1999).

Schwering, P.

D. Dion and P. Schwering, "On the analysis of atmospheric effects on electro-optical sensors in the marine surface layer," in Proceedings of the NATO-IRIS Conference, (IRIS, 1996), Vol. 41, pp. 305-322.

Shumaker, D. L.

J. S. Accetta and D. L. Shumaker, eds., The Infrared and Electro-Optical Systems Handbook (Environmental Research Institute of Michigan and SPIE Optical Engineering Press, 1993), pp. 157-232.

Spinhirne, J. D.

Stremler, F. G.

F. G. Stremler, Introduction to Communication Systems (Addison-Wesley, 1982).

Tatarski, V. I.

V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).

Tervonen, J. K.

W. Zhang, J. K. Tervonen, and E. T. Salonen, "Backward and forward scattering by the melting layer composed of spheroidal hydrometers at 5-100 GHz," IEEE Trans. Antennas Propag. 44, 1208-1219 (1996).
[CrossRef]

Thiermann, V.

V. Thiermann and A. Kohnle, "A simple model for the structure constant of temperature fluctuations in the lower atmosphere," J. Phys. D 21, S37-S40 (1988).
[CrossRef]

Vasic, B.

Vernin, J.

J. Vernin, M. Crochet, M. Azouit, and O. Ghebrebrhan, "SCIDAR radar simultaneous measurements of atmospheric turbulence," Radio Sci. 25, 953-959 (1990).
[CrossRef]

Watkins, B. J.

Yamao, Y.

S. Ohmori, Y. Yamao, and N. Nakajima, "The future generation of mobile communications based on broadband access methods," J. Wireless Personal Commun. 17, 175-190 (2001).
[CrossRef]

Young, C. Y.

C. Y. Young, Y. V. Gilchrest, and B. R. Macon, "Turbulence induced beam spreading of higher order mode optical waves," Opt. Eng. 41, 1097-1103 (2002).
[CrossRef]

Zhang, W.

W. Zhang, J. K. Tervonen, and E. T. Salonen, "Backward and forward scattering by the melting layer composed of spheroidal hydrometers at 5-100 GHz," IEEE Trans. Antennas Propag. 44, 1208-1219 (1996).
[CrossRef]

Zilberman, A.

A. Zilberman and N. S. Kopeika, "Aerosol and turbulence characterization at different heights in semi-arid regions," in Atmospheric Optical Modeling, Measurement, and Simulation, S. M. Doss-Hammel and A. Kohnle, eds., Proc. SPIE 5891, 129-140 (2005).

Appl. Opt. (6)

IEEE Commun. Mag. (1)

G. M. Djuknic, J. Freidenfelds, and Y. Okunev, "Establishing wireless communication services via high-altitude aeronautical platforms: a concept whose time has come?" IEEE Commun. Mag. 35, 128-135 (1997).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

W. Zhang, J. K. Tervonen, and E. T. Salonen, "Backward and forward scattering by the melting layer composed of spheroidal hydrometers at 5-100 GHz," IEEE Trans. Antennas Propag. 44, 1208-1219 (1996).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

P. Greiling and N. Ho, "Commercial satellite applications for heterojunction microelectronics technology," IEEE Trans. Microwave Theory Tech. 46, 734-738 (1998).
[CrossRef]

J. Opt. Netw. (1)

J. Opt. Soc. Am. A (1)

J. Phys. D (1)

V. Thiermann and A. Kohnle, "A simple model for the structure constant of temperature fluctuations in the lower atmosphere," J. Phys. D 21, S37-S40 (1988).
[CrossRef]

J. Wireless Personal Commun. (2)

T. H. Nielsen, "IPv6 for wireless networks," J. Wireless Personal Commun. 17, 237-247 (2001).
[CrossRef]

S. Ohmori, Y. Yamao, and N. Nakajima, "The future generation of mobile communications based on broadband access methods," J. Wireless Personal Commun. 17, 175-190 (2001).
[CrossRef]

Opt. Eng. (5)

C. Y. Young, Y. V. Gilchrest, and B. R. Macon, "Turbulence induced beam spreading of higher order mode optical waves," Opt. Eng. 41, 1097-1103 (2002).
[CrossRef]

N. S. Kopeika, I. Kogan, R. Israeli, and I. Dinstein, "Prediction of image propagation quality through the atmosphere: The dependence of atmospheric modulation transfer function on weather," Opt. Eng. 29, 1427-1438 (1990).
[CrossRef]

D. Sadot and N. S. Kopeika, "Forecasting optical turbulence strength on basis of macroscale meteorology and aerosols: models and validation," Opt. Eng. 31, 200-212 (1992).
[CrossRef]

D. L. Hutt, "Modeling and measurements of atmospheric optical turbulence over land," Opt. Eng. 38, 1288-1295 (1999).
[CrossRef]

M. A. Al-Habash, L. C. Andrews, and R. L. Philips, "Mathematical model for the irradiance probability density function of a laser beam propagation through turbulence media," Opt. Eng. 40, 1554-1562 (2001).
[CrossRef]

Proc. SPIE (2)

A. Zilberman and N. S. Kopeika, "Aerosol and turbulence characterization at different heights in semi-arid regions," in Atmospheric Optical Modeling, Measurement, and Simulation, S. M. Doss-Hammel and A. Kohnle, eds., Proc. SPIE 5891, 129-140 (2005).

N. S. Kopeika, I. Kogan, R. Israeli, and I. Dinstein, "Prediction of image quality through atmosphere as a function of weather forecast," in Propagation Engineering, N. S. Kopeika and W. B. Miller, eds., Proc. SPIE 1115, 266-277 (1989).

Radio Sci. (1)

J. Vernin, M. Crochet, M. Azouit, and O. Ghebrebrhan, "SCIDAR radar simultaneous measurements of atmospheric turbulence," Radio Sci. 25, 953-959 (1990).
[CrossRef]

Reports Acad. Sci. USSR (1)

A. N. Kolmogorov, "The local structure of turbulence incompressible viscous fluid for very large Reynolds numbers," Reports Acad. Sci. USSR 30, 301-305 (1941).

Trans. Akad. Nauk. (1)

A. S. Monin and A. M. Obukhov, "Basic law of turbulent mixing near the ground," Trans. Akad. Nauk. 24, 1963-1987 (1954).

Other (18)

V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).

D. Dion and P. Schwering, "On the analysis of atmospheric effects on electro-optical sensors in the marine surface layer," in Proceedings of the NATO-IRIS Conference, (IRIS, 1996), Vol. 41, pp. 305-322.

A. Berk, L. S. Bernstein, and D. C. Robertson, MODTRAN: a moderate resolution model for LOWTRAN 7, Tech. Rep. GL-TR-89-0122 (Air Force Geophysics Laboratory, 1989).

J. S. Accetta and D. L. Shumaker, eds., The Infrared and Electro-Optical Systems Handbook (Environmental Research Institute of Michigan and SPIE Optical Engineering Press, 1993), pp. 157-232.

L. C. Andrews, Special Functions of Mathematics for Engineers, 2nd ed. (SPIE Optical Engineering Press and Oxford U. Press, 1998).

A. Papoulis, Probability Random Variables and Stochastic Process (McGraw-Hill, 1991).

J. G. Proakis, Digital Communication, 4th ed. (McGraw-Hill, 2001).

N. Blaunstein and J. B. Andersen, Multipath Phenomena in Cellular Networks (Artech House, 2002).

L. D. Duncan, J. D. Lindberg, and R. B. Loveland, An Empirical Model of the Vertical Structure of German Fogs, Rep. ASL-TR-0071 (U.S. Army Atmospheric Sciences Laboratory, 1980).

L. C. Andrews, R. L. Phillips, and C. Y. Hopen, Laser Beam Scintillation with Applications (SPIE Optical Engineering Press, 2001).

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978).

S. R. Saunders, Antennas and Propagation for Wireless Communication Systems (Wiley, 1999).

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Optical Engineering Press, 1998).

F. G. Stremler, Introduction to Communication Systems (Addison-Wesley, 1982).

N. S. Kopeika, A System Engineering Approach to Imaging (SPIE Optical Engineering Press, 1998).

A. Banakh and V. L. Mironov, LIDAR in a Turbulence Atmosphere (Artech House, 1987).

J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, 1998).

Y. Hase, R. Miura, and S. Ohmori, "A novel broadband all-wireless access network using stratospheric radio platform," presented at the Forty-eighth Vehicular Technology Conference, Ottawa, Canada, 18-21 May 1998.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Turbulence parameter C n 2 as a function of height.

Fig. 2
Fig. 2

(Color online) Proposed model flow diagram.

Fig. 3
Fig. 3

(Color online) β 0 2 as a function of C n 2 for different ranges of the channel.

Fig. 4
Fig. 4

(Color online) β 0 2 as a function of C n 2 for different wavelengths and a constant range of L = 1 km.

Fig. 5
Fig. 5

(Color online) Scintillation index σ I 2 as a function of β 0 2 .

Fig. 6
Fig. 6

(Color online) Ricean K parameter versus scintillation index σ I 2 for (a) d = 0 and (b) d = 10.

Fig. 7
Fig. 7

(Color online) Spectral efficiency C ˜ as a function of K parameter for (a) d = 0 , β 0 2 starts from 0; (b) d = 0, β 0 2 starts from 0.1 ; (c) d = 10, β 0 2 starts from 0; and (d) d = 10, β 0 2 starts from 0.1.

Fig. 8
Fig. 8

(Color online) Spectral efficiency as a function of K parameter (SNR varying) for L = 1 km, and (a) point receiver (d = 0), (b) collimated lens receiver (d = 10).

Fig. 9
Fig. 9

(Color online) BER as a function of K parameter for varying receiver lens size, and for L = 1 km. (a) Heights of 100–200 m. (b) Heights of 1–2 km.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

Φ n ( κ ) = K ( α ) C n 2 κ α 2 f ( κ l 0 ) ,
α 2 = 2.914 D 1 / 3 0 L C n 2 ( z ) ( z / L ) 5 / 3 d z ,
σ I 2 = [ I I ] 2 I 2 = I inc 2 I c o 2 K 2 ,
p x ( x ) = α ( α x ) α 1 Γ ( α ) exp ( α x ) for x > 0 ,   α > 0 ,
p y ( y ) = β ( β y ) β 1 Γ ( β ) exp ( - β y ) for y > 0 ,   β > 0 ,
p y ( I x ) = β ( β I / x ) β 1 x Γ ( β ) exp ( - β I / x ) for I > 0 ,
p ( I ) = 0 p y ( I x ) p x ( x ) d x = 2 ( α β ) ( α + β ) / 2 Γ ( α ) Γ ( β ) I [ ( α + β ) / 2 ] 1 K α β [ 2 ( α β I ) 1 / 2 ] c for I > 0 ,
α = 1 σ x 2 , β = 1 σ y 2 ,
σ I 2 = 1 α + 1 β + 1 α β .
pdf ( r ) = r σ 2 exp { - r 2 + A 2 2 σ 2 } I 0 ( A r σ 2 ) for A > 0 , r 0 ,
K = A 2 2 σ 2 = I c o I inc .
pdf ( x ) = r σ 2 exp { - r 2 2 σ 2 } exp ( - K ) I 0 ( r σ 2 K ) ,
pdf ( x ) = r σ 2 exp { - r 2 2 σ 2 } .
P r ( e ) = 1 2 0 p i ( s ) erfc ( S N R s 2 2 i s ) d s .
σ x 2 = exp { 0.49 β 0 2 ( 1 + 0.18 d 2 + 0.56 β 0 12 / 5 ) 7 / 6 } 1 ,
σ y 2 = exp { 0.51 β 0 2 ( 1 + 0.9 d 2 + 0.62 β 0 12 / 5 ) 5 / 6 } 1 ,
β 0 = 0.5 C n 2 k 7 / 6 L 11 / 6 ,
d = ( k D 2 / 4 L ) 1 / 2 ,
P r ( e ) = 1 2 0 erfc ( SNR s 2 2 i s ) 2 ( α β ) ( α + β ) / 2 Γ ( α ) Γ ( β ) i s ( s i s ) [ ( α + β ) / 2 ] 1 × K ( α β ) ( 2 α β s i s ) d s ,
C = B w log 2 ( 1 + S N ) ,
C = B w log 2 [ 1 + S N 0 B w + N mul ] .
C = B w log 2 [ 1 + S N 0 B w + N mul ] = B w log 2 [ 1 + ( N add S + N mul S ) - 1 ] ,
C = B w log 2 [ 1 + ( SNR add 1 + K 1 ) 1 ] = B w log 2 ( 1 + K SNR add K + SNR add ) .
C ˜ = C B w = log 2 ( 1 + K SNR add K + SNR add ) ,

Metrics