Abstract

Power splitters based on multimode interference (MMI) devices that offer the possibility of dynamically tuning the power-splitting ratio using electro-optic (EO) polymers are presented. The so-called 1×2 electro-optic MMI (EO-MMI) is demonstrated to provide a tuning range of 6  dB at 54  V as theoretically predicted. Also a method is discussed to reduce the driving voltage by generating multiple beats, which provide 15 V for a tunable range of 10  dB for r33=15pm/V at wavelength 1.55μm.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Burns and A. Milton, "An analytic solution for mode coupling in optical branches," IEEE J. Quantum Electron. 16, 446-454 (1980).
    [CrossRef]
  2. C. Themistos and B. M. Azizur Rahman, "Design issues of multimode interference based 3 dB splitters," Appl. Opt. 33, 7037-7044 (2002).
    [CrossRef]
  3. L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. M. Pennings, "Planar monomode optical couplers based on multimode interference effects," J. Lightwave Technol. 10, 1843-1850 (1992).
    [CrossRef]
  4. O. Byryngdahl, "Image formation using self-imaging techniques," J. Opt. Soc. Am. 63, 416-419 (1973).
    [CrossRef]
  5. X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu, and S. Ishikawa, "Compact variable optical attenuator based on multimode interference coupler," IEEE Photon. Technol. Lett. 17, 2361-2363 (2005).
    [CrossRef]
  6. R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, "Novel 1 × N and N × N integrated optical switches using self-imaging multimode GaAs/AlGaAs waveguides," Appl. Phys. Lett. 64, 684-686 (1994).
    [CrossRef]
  7. R. Thapliya, S. Nakamura, and T. Kikuchi, "Electro-optic multimode interference device using organic materials," Appl. Opt. 45, 5404-5413 (2006).
    [CrossRef] [PubMed]
  8. R. Thapliya, T. Kikuchi, and S. Nakamura, "Electro-optic multimode interference device based on nonlinear organic materials," Proceedings of IEEE-LEOS 06, ThDD 2 (Montreal, Canada), pp. 959-960 (2006).
  9. L. B. Saldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995).
    [CrossRef]
  10. R. A Soref, J. Schidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
    [CrossRef]
  11. M. He, T. M. Leslie, J. A. Sinicropi, S. M. Garner, and L. D. Reed, "Synthesis of chromophores with extremely high electrooptic activities 2. isophorone- and combined isophorone-thiophene-based chromophores," Chem. Mater. 14, 4669-4675 (2002).
    [CrossRef]
  12. S. M. Garner, I. S. Cites, M. He, and J. Wang, "Polysulfone as an electro-otpic polymer host material," Appl. Phys. Lett. 84, 1049-1051 (2004).
    [CrossRef]
  13. R. Thapliya, Y. Okano, and S. Nakamura, "Electro-optic characteristics of thin-film PLZT waveguide using ridge-type Mach-Zehnder modulator," J. Lightwave Technol. 21, 1820-1827 (2003).
    [CrossRef]
  14. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electrooptic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000).
    [CrossRef]
  15. T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
    [CrossRef]

2006 (2)

R. Thapliya, S. Nakamura, and T. Kikuchi, "Electro-optic multimode interference device using organic materials," Appl. Opt. 45, 5404-5413 (2006).
[CrossRef] [PubMed]

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
[CrossRef]

2005 (1)

X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu, and S. Ishikawa, "Compact variable optical attenuator based on multimode interference coupler," IEEE Photon. Technol. Lett. 17, 2361-2363 (2005).
[CrossRef]

2004 (1)

S. M. Garner, I. S. Cites, M. He, and J. Wang, "Polysulfone as an electro-otpic polymer host material," Appl. Phys. Lett. 84, 1049-1051 (2004).
[CrossRef]

2003 (1)

2002 (2)

C. Themistos and B. M. Azizur Rahman, "Design issues of multimode interference based 3 dB splitters," Appl. Opt. 33, 7037-7044 (2002).
[CrossRef]

M. He, T. M. Leslie, J. A. Sinicropi, S. M. Garner, and L. D. Reed, "Synthesis of chromophores with extremely high electrooptic activities 2. isophorone- and combined isophorone-thiophene-based chromophores," Chem. Mater. 14, 4669-4675 (2002).
[CrossRef]

2000 (1)

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electrooptic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000).
[CrossRef]

1995 (1)

L. B. Saldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

1994 (1)

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, "Novel 1 × N and N × N integrated optical switches using self-imaging multimode GaAs/AlGaAs waveguides," Appl. Phys. Lett. 64, 684-686 (1994).
[CrossRef]

1992 (1)

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. M. Pennings, "Planar monomode optical couplers based on multimode interference effects," J. Lightwave Technol. 10, 1843-1850 (1992).
[CrossRef]

1991 (1)

R. A Soref, J. Schidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

1980 (1)

W. Burns and A. Milton, "An analytic solution for mode coupling in optical branches," IEEE J. Quantum Electron. 16, 446-454 (1980).
[CrossRef]

1973 (1)

Azizur Rahman, B. M.

C. Themistos and B. M. Azizur Rahman, "Design issues of multimode interference based 3 dB splitters," Appl. Opt. 33, 7037-7044 (2002).
[CrossRef]

Bechtel, J. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electrooptic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000).
[CrossRef]

Birbeck, J. C. H.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, "Novel 1 × N and N × N integrated optical switches using self-imaging multimode GaAs/AlGaAs waveguides," Appl. Phys. Lett. 64, 684-686 (1994).
[CrossRef]

Burns, W.

W. Burns and A. Milton, "An analytic solution for mode coupling in optical branches," IEEE J. Quantum Electron. 16, 446-454 (1980).
[CrossRef]

Byryngdahl, O.

Cites, I. S.

S. M. Garner, I. S. Cites, M. He, and J. Wang, "Polysulfone as an electro-otpic polymer host material," Appl. Phys. Lett. 84, 1049-1051 (2004).
[CrossRef]

Dalton, L. R.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electrooptic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000).
[CrossRef]

Dubost, A. H.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. M. Pennings, "Planar monomode optical couplers based on multimode interference effects," J. Lightwave Technol. 10, 1843-1850 (1992).
[CrossRef]

Garner, S. M.

S. M. Garner, I. S. Cites, M. He, and J. Wang, "Polysulfone as an electro-otpic polymer host material," Appl. Phys. Lett. 84, 1049-1051 (2004).
[CrossRef]

M. He, T. M. Leslie, J. A. Sinicropi, S. M. Garner, and L. D. Reed, "Synthesis of chromophores with extremely high electrooptic activities 2. isophorone- and combined isophorone-thiophene-based chromophores," Chem. Mater. 14, 4669-4675 (2002).
[CrossRef]

Hau, S.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
[CrossRef]

He, M.

S. M. Garner, I. S. Cites, M. He, and J. Wang, "Polysulfone as an electro-otpic polymer host material," Appl. Phys. Lett. 84, 1049-1051 (2004).
[CrossRef]

M. He, T. M. Leslie, J. A. Sinicropi, S. M. Garner, and L. D. Reed, "Synthesis of chromophores with extremely high electrooptic activities 2. isophorone- and combined isophorone-thiophene-based chromophores," Chem. Mater. 14, 4669-4675 (2002).
[CrossRef]

Heaton, J. M.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, "Novel 1 × N and N × N integrated optical switches using self-imaging multimode GaAs/AlGaAs waveguides," Appl. Phys. Lett. 64, 684-686 (1994).
[CrossRef]

Hilton, K. P.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, "Novel 1 × N and N × N integrated optical switches using self-imaging multimode GaAs/AlGaAs waveguides," Appl. Phys. Lett. 64, 684-686 (1994).
[CrossRef]

Ishikawa, S.

X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu, and S. Ishikawa, "Compact variable optical attenuator based on multimode interference coupler," IEEE Photon. Technol. Lett. 17, 2361-2363 (2005).
[CrossRef]

Jang, S.-H.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
[CrossRef]

Jen, A. K.-Y.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
[CrossRef]

Jenkins, R. M.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, "Novel 1 × N and N × N integrated optical switches using self-imaging multimode GaAs/AlGaAs waveguides," Appl. Phys. Lett. 64, 684-686 (1994).
[CrossRef]

Jiang, X.

X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu, and S. Ishikawa, "Compact variable optical attenuator based on multimode interference coupler," IEEE Photon. Technol. Lett. 17, 2361-2363 (2005).
[CrossRef]

Ka, J.-W.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
[CrossRef]

Kang, J.-W.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
[CrossRef]

Kikuchi, T.

R. Thapliya, S. Nakamura, and T. Kikuchi, "Electro-optic multimode interference device using organic materials," Appl. Opt. 45, 5404-5413 (2006).
[CrossRef] [PubMed]

R. Thapliya, T. Kikuchi, and S. Nakamura, "Electro-optic multimode interference device based on nonlinear organic materials," Proceedings of IEEE-LEOS 06, ThDD 2 (Montreal, Canada), pp. 959-960 (2006).

Kim, T.-D.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
[CrossRef]

Leslie, T. M.

M. He, T. M. Leslie, J. A. Sinicropi, S. M. Garner, and L. D. Reed, "Synthesis of chromophores with extremely high electrooptic activities 2. isophorone- and combined isophorone-thiophene-based chromophores," Chem. Mater. 14, 4669-4675 (2002).
[CrossRef]

Li, X.

X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu, and S. Ishikawa, "Compact variable optical attenuator based on multimode interference coupler," IEEE Photon. Technol. Lett. 17, 2361-2363 (2005).
[CrossRef]

Luo, J.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
[CrossRef]

Milton, A.

W. Burns and A. Milton, "An analytic solution for mode coupling in optical branches," IEEE J. Quantum Electron. 16, 446-454 (1980).
[CrossRef]

Nakamura, S.

Okano, Y.

Parker, J. T.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, "Novel 1 × N and N × N integrated optical switches using self-imaging multimode GaAs/AlGaAs waveguides," Appl. Phys. Lett. 64, 684-686 (1994).
[CrossRef]

Pennings, E. C. M.

L. B. Saldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. M. Pennings, "Planar monomode optical couplers based on multimode interference effects," J. Lightwave Technol. 10, 1843-1850 (1992).
[CrossRef]

Petermann, K.

R. A Soref, J. Schidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

Reed, L. D.

M. He, T. M. Leslie, J. A. Sinicropi, S. M. Garner, and L. D. Reed, "Synthesis of chromophores with extremely high electrooptic activities 2. isophorone- and combined isophorone-thiophene-based chromophores," Chem. Mater. 14, 4669-4675 (2002).
[CrossRef]

Robinson, B. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electrooptic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000).
[CrossRef]

Saldano, L. B.

L. B. Saldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

Schidtchen, J.

R. A Soref, J. Schidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

Shi, Y.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electrooptic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000).
[CrossRef]

Shi, Z.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
[CrossRef]

Sinicropi, J. A.

M. He, T. M. Leslie, J. A. Sinicropi, S. M. Garner, and L. D. Reed, "Synthesis of chromophores with extremely high electrooptic activities 2. isophorone- and combined isophorone-thiophene-based chromophores," Chem. Mater. 14, 4669-4675 (2002).
[CrossRef]

Smit, M. K.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. M. Pennings, "Planar monomode optical couplers based on multimode interference effects," J. Lightwave Technol. 10, 1843-1850 (1992).
[CrossRef]

Smith, G. W.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, "Novel 1 × N and N × N integrated optical switches using self-imaging multimode GaAs/AlGaAs waveguides," Appl. Phys. Lett. 64, 684-686 (1994).
[CrossRef]

Soldano, L. B.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. M. Pennings, "Planar monomode optical couplers based on multimode interference effects," J. Lightwave Technol. 10, 1843-1850 (1992).
[CrossRef]

Soref, R. A

R. A Soref, J. Schidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

Steier, W. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electrooptic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000).
[CrossRef]

Thapliya, R.

Themistos, C.

C. Themistos and B. M. Azizur Rahman, "Design issues of multimode interference based 3 dB splitters," Appl. Opt. 33, 7037-7044 (2002).
[CrossRef]

Tian, Y.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
[CrossRef]

Tucker, N. M.

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
[CrossRef]

Veerman, F. B.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. M. Pennings, "Planar monomode optical couplers based on multimode interference effects," J. Lightwave Technol. 10, 1843-1850 (1992).
[CrossRef]

Verbeek, B. H.

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. M. Pennings, "Planar monomode optical couplers based on multimode interference effects," J. Lightwave Technol. 10, 1843-1850 (1992).
[CrossRef]

Wang, J.

S. M. Garner, I. S. Cites, M. He, and J. Wang, "Polysulfone as an electro-otpic polymer host material," Appl. Phys. Lett. 84, 1049-1051 (2004).
[CrossRef]

Wang, M.

X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu, and S. Ishikawa, "Compact variable optical attenuator based on multimode interference coupler," IEEE Photon. Technol. Lett. 17, 2361-2363 (2005).
[CrossRef]

Wight, D. R.

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, "Novel 1 × N and N × N integrated optical switches using self-imaging multimode GaAs/AlGaAs waveguides," Appl. Phys. Lett. 64, 684-686 (1994).
[CrossRef]

Wu, Y.

X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu, and S. Ishikawa, "Compact variable optical attenuator based on multimode interference coupler," IEEE Photon. Technol. Lett. 17, 2361-2363 (2005).
[CrossRef]

Yang, J.

X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu, and S. Ishikawa, "Compact variable optical attenuator based on multimode interference coupler," IEEE Photon. Technol. Lett. 17, 2361-2363 (2005).
[CrossRef]

Zhang, C.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electrooptic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000).
[CrossRef]

Zhang, H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electrooptic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000).
[CrossRef]

Zhou, H.

X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu, and S. Ishikawa, "Compact variable optical attenuator based on multimode interference coupler," IEEE Photon. Technol. Lett. 17, 2361-2363 (2005).
[CrossRef]

Adv. Mater. (1)

T.-D. Kim, J. Luo, J.-W. Ka, S. Hau, Y. Tian, Z. Shi, N. M. Tucker, S.-H. Jang, J.-W. Kang, and A. K.-Y. Jen, "Ultralarge and thermally stable electro-optic activities from Diels-Alder crosslinkable polymers containing binary chromophore systems," Adv. Mater. 18, 3038-3042 (2006).
[CrossRef]

Appl. Opt. (2)

C. Themistos and B. M. Azizur Rahman, "Design issues of multimode interference based 3 dB splitters," Appl. Opt. 33, 7037-7044 (2002).
[CrossRef]

R. Thapliya, S. Nakamura, and T. Kikuchi, "Electro-optic multimode interference device using organic materials," Appl. Opt. 45, 5404-5413 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

R. M. Jenkins, J. M. Heaton, D. R. Wight, J. T. Parker, J. C. H. Birbeck, G. W. Smith, and K. P. Hilton, "Novel 1 × N and N × N integrated optical switches using self-imaging multimode GaAs/AlGaAs waveguides," Appl. Phys. Lett. 64, 684-686 (1994).
[CrossRef]

S. M. Garner, I. S. Cites, M. He, and J. Wang, "Polysulfone as an electro-otpic polymer host material," Appl. Phys. Lett. 84, 1049-1051 (2004).
[CrossRef]

Chem. Mater. (1)

M. He, T. M. Leslie, J. A. Sinicropi, S. M. Garner, and L. D. Reed, "Synthesis of chromophores with extremely high electrooptic activities 2. isophorone- and combined isophorone-thiophene-based chromophores," Chem. Mater. 14, 4669-4675 (2002).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. A Soref, J. Schidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991).
[CrossRef]

W. Burns and A. Milton, "An analytic solution for mode coupling in optical branches," IEEE J. Quantum Electron. 16, 446-454 (1980).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

X. Jiang, X. Li, H. Zhou, J. Yang, M. Wang, Y. Wu, and S. Ishikawa, "Compact variable optical attenuator based on multimode interference coupler," IEEE Photon. Technol. Lett. 17, 2361-2363 (2005).
[CrossRef]

J. Lightwave Technol. (3)

L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. M. Pennings, "Planar monomode optical couplers based on multimode interference effects," J. Lightwave Technol. 10, 1843-1850 (1992).
[CrossRef]

L. B. Saldano and E. C. M. Pennings, "Optical multi-mode interference devices based on self-imaging: principles and applications," J. Lightwave Technol. 13, 615-627 (1995).
[CrossRef]

R. Thapliya, Y. Okano, and S. Nakamura, "Electro-optic characteristics of thin-film PLZT waveguide using ridge-type Mach-Zehnder modulator," J. Lightwave Technol. 21, 1820-1827 (2003).
[CrossRef]

J. Opt. Soc. Am. (1)

Science (1)

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (sub-1-volt) halfwave voltage polymeric electrooptic modulators achieved by controlling chromophore shape," Science 288, 119-122 (2000).
[CrossRef]

Other (1)

R. Thapliya, T. Kikuchi, and S. Nakamura, "Electro-optic multimode interference device based on nonlinear organic materials," Proceedings of IEEE-LEOS 06, ThDD 2 (Montreal, Canada), pp. 959-960 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of tunable 1 × 2 EO-MMI device; (b) detailed cross-section design of input access waveguide; (c) dimensions of planar multimode section. [Note: (a) and (c) are shown without the output access curve waveguides for clarity.]

Fig. 2
Fig. 2

(a) Case when no index change is induced at the first pair of self-images thus providing a 3   dB power splitter; (b) case when + 0.000185 and 0.000185 index changes are induced on the respective upper electrodes, shifting power from channel 2 to channel 1; and (c) case when the index changes are reversed (i.e., 0.000185 and + 0.000185 ), shifting power from channel 1 to channel 2.

Fig. 3
Fig. 3

SEM picture of MMI joint section and the access waveguide after dry etching.

Fig. 4
Fig. 4

(a) Experimental results; (b) theoretical prediction with the 21 V prebias included.

Fig. 5
Fig. 5

Illustration of 1 × 2 EO-MMI tunable splitters for m = 1 , 2 , 3 , 4 , 5 and their driving schemes.

Fig. 6
Fig. 6

(a) Dependence of V b and tuning range on m; (b) response for case m = 3 .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

L C = π β 0 β 1 = 4 W eff 2 n eff 3 λ 0 ,
W eff = W + ( λ 0 π ) ( n s n eff ) 2 σ ( n eff 2 n s 2 ) 1 / 2 ,
L N = 1 N ( 3 L C 4 ) = W eff 2 n eff N λ 0 .
L S = L 2 + m L 1 ,

Metrics