Abstract

An optical fiber liquid-level sensor based on an extrinsic Fabry–Perot (FP) cavity is proposed and demonstrated. The FP cavity consists of the end of the single-mode optical fiber and the elastic silicon layer. Liquid pressures act on the mechanical construction to change the cavity length, resulting in differential phase shifts that may be observed as variations of the output signal intensity. Self-compensated steps have been taken to obtain high accuracy and long-term stability in realistic circumstances. Experimental results indicate that accuracy of 2  mm over a full scale of 3.5  m (water) is obtained under ambient temperature 1038°C. The sensor can be used to measure liquid levels continuously and accurately in explosive and flammable environments.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Musayev and S. E. Karlik, "A novel liquid level detection method and its implementation," Sens. Actuators A 109, 21-24 (2003).
    [CrossRef]
  2. S. Khaliq, S. W. James, and R. P. Tatam, "Fiber-optic liquid-level sensor using a long-period grating," Opt. Lett. 26, 1224-1226 (2001).
    [CrossRef]
  3. V. E. Sakharov, S. A. Kuznetsov, B. D. Zaitsev, I. E. Kuznetsova, and S. G. Joshi, "Liquid level sensor using ultrasonic lamb waves," Ultrasonics 41, 319-322 (2003).
    [CrossRef] [PubMed]
  4. A. Poghossian, J. W. Schultze, and M. J. Schoning, "Application of a (bio-)chemical sensor (ISFET) for the detection of physical parameters in liquids," Electrochim. Acta 48, 3289-3297 (2003).
    [CrossRef]
  5. H. Golnabi, "Design and operation of a fiber optic sensor for liquid level detection," Opt. Lasers Eng. 41, 801-812 (2004).
    [CrossRef]
  6. C. N. Yang, S. P. Chen, and G. G. Yang, "Fiber optical liquid level sensor under cryogenic environment," Sens. Actuators A 94, 69-75 (2001).
    [CrossRef]
  7. L. B. Yuan, "Multiplexed, white-light interferometric fiber-optic sensor matrix with a long-cavity, Fabry-Perot resonator," Appl. Opt. 41, 4460-4466 (2002).
    [CrossRef] [PubMed]
  8. S. H. Kim and J. J. Lee, "Phase-shifted transmission/reflection-type hybrid extrinsic Fabry-Perot interferometric optical fiber sensors," J. Lightwave Technol. 21, 797-804 (2003).
    [CrossRef]
  9. N. D. Rees, S. W. James, S. E. Staines, and R. P. Tatam, "Submicrometer fiber-optic Fabry-Perot interferometer formed by use of the Langmuir-Blodgett technique," Opt. Lett. 26, 1840-1842 (2001).
    [CrossRef]
  10. M. Schmidt and N. Furstenau, "Fiber-optic extrinsic Fabry-Perot interferometer sensors with three-wavelength digital phase demodulation," Opt. Lett. 24, 599-601 (1999).
    [CrossRef]
  11. G. J. Zhang, Q. X. Yu, and S. D. Song, "An investigation of interference/intensity demodulated fiber-optic Fabry-Perot cavity sensor," Sens. Actuators A 116, 33-38 (2004).
    [CrossRef]
  12. T. A. Tran, W. V. Miller, K. A. Murphy, and Ashish, "Stabilized extrinsic fiber-optic Fizeau sensor for surface acoustic wave detection," J. Lightwave Technol. 10, 1499-1506 (1992).
    [CrossRef]
  13. K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, "Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors," Opt. Lett. 16, 273-275 (1991).
    [CrossRef] [PubMed]
  14. H. W. Rong, G. Y. Jun, and L. Z. Lin, "The temperature compensation design of an optical fiber liquid-level sensor with Fabry-Perot cavity," Acta Photon. Sin. 34, 1810-1813 (2005).
  15. C. S. Perez, A. G. Valenzuela, and G. E. S. Romero, "Technique for referencing of fiber-optic intensity-modulated sensors by use of counterpropagating signals," Opt. Lett. 29, 1467-1469 (2004).
    [CrossRef]
  16. C. E. Lee and H. F. Taylor, "Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source," J. Lightwave Technol. 9, 129-134 (1991).
    [CrossRef]
  17. A. B. Wang, H. Xiao, J. Wang, Z. Y. Wang, W. Zhao, and R. G. May, "Self-calibrated interferometric-intensity-based optical fiber sensors," J. Lightwave Technol. 19, 1495-1501 (2001).
    [CrossRef]
  18. T. Y. Wang, S. X. Zheng, and Z. G. Yang, "A high precision displacement sensor using a low-finesse fiber-optic Fabry-Perot interferometer," Sens. Actuators A 69, 134-138 (1998).
    [CrossRef]
  19. S. H. Kim and J. J. Lee, "Phase-shifted transmission/reflection-type hybrid extrinsic Fabry-Perot interferometric optical fiber sensors," J. Lightwave Technol. 21, 797-804 (2003).
    [CrossRef]

2005

H. W. Rong, G. Y. Jun, and L. Z. Lin, "The temperature compensation design of an optical fiber liquid-level sensor with Fabry-Perot cavity," Acta Photon. Sin. 34, 1810-1813 (2005).

2004

C. S. Perez, A. G. Valenzuela, and G. E. S. Romero, "Technique for referencing of fiber-optic intensity-modulated sensors by use of counterpropagating signals," Opt. Lett. 29, 1467-1469 (2004).
[CrossRef]

G. J. Zhang, Q. X. Yu, and S. D. Song, "An investigation of interference/intensity demodulated fiber-optic Fabry-Perot cavity sensor," Sens. Actuators A 116, 33-38 (2004).
[CrossRef]

H. Golnabi, "Design and operation of a fiber optic sensor for liquid level detection," Opt. Lasers Eng. 41, 801-812 (2004).
[CrossRef]

2003

S. H. Kim and J. J. Lee, "Phase-shifted transmission/reflection-type hybrid extrinsic Fabry-Perot interferometric optical fiber sensors," J. Lightwave Technol. 21, 797-804 (2003).
[CrossRef]

E. Musayev and S. E. Karlik, "A novel liquid level detection method and its implementation," Sens. Actuators A 109, 21-24 (2003).
[CrossRef]

V. E. Sakharov, S. A. Kuznetsov, B. D. Zaitsev, I. E. Kuznetsova, and S. G. Joshi, "Liquid level sensor using ultrasonic lamb waves," Ultrasonics 41, 319-322 (2003).
[CrossRef] [PubMed]

A. Poghossian, J. W. Schultze, and M. J. Schoning, "Application of a (bio-)chemical sensor (ISFET) for the detection of physical parameters in liquids," Electrochim. Acta 48, 3289-3297 (2003).
[CrossRef]

S. H. Kim and J. J. Lee, "Phase-shifted transmission/reflection-type hybrid extrinsic Fabry-Perot interferometric optical fiber sensors," J. Lightwave Technol. 21, 797-804 (2003).
[CrossRef]

2002

2001

1999

1998

T. Y. Wang, S. X. Zheng, and Z. G. Yang, "A high precision displacement sensor using a low-finesse fiber-optic Fabry-Perot interferometer," Sens. Actuators A 69, 134-138 (1998).
[CrossRef]

1992

T. A. Tran, W. V. Miller, K. A. Murphy, and Ashish, "Stabilized extrinsic fiber-optic Fizeau sensor for surface acoustic wave detection," J. Lightwave Technol. 10, 1499-1506 (1992).
[CrossRef]

1991

K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, "Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors," Opt. Lett. 16, 273-275 (1991).
[CrossRef] [PubMed]

C. E. Lee and H. F. Taylor, "Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source," J. Lightwave Technol. 9, 129-134 (1991).
[CrossRef]

Chen, S. P.

C. N. Yang, S. P. Chen, and G. G. Yang, "Fiber optical liquid level sensor under cryogenic environment," Sens. Actuators A 94, 69-75 (2001).
[CrossRef]

Claus, R. O.

Furstenau, N.

Golnabi, H.

H. Golnabi, "Design and operation of a fiber optic sensor for liquid level detection," Opt. Lasers Eng. 41, 801-812 (2004).
[CrossRef]

Gunther, M. F.

James, S. W.

Joshi, S. G.

V. E. Sakharov, S. A. Kuznetsov, B. D. Zaitsev, I. E. Kuznetsova, and S. G. Joshi, "Liquid level sensor using ultrasonic lamb waves," Ultrasonics 41, 319-322 (2003).
[CrossRef] [PubMed]

Jun, G. Y.

H. W. Rong, G. Y. Jun, and L. Z. Lin, "The temperature compensation design of an optical fiber liquid-level sensor with Fabry-Perot cavity," Acta Photon. Sin. 34, 1810-1813 (2005).

Karlik, S. E.

E. Musayev and S. E. Karlik, "A novel liquid level detection method and its implementation," Sens. Actuators A 109, 21-24 (2003).
[CrossRef]

Khaliq, S.

Kim, S. H.

Kuznetsov, S. A.

V. E. Sakharov, S. A. Kuznetsov, B. D. Zaitsev, I. E. Kuznetsova, and S. G. Joshi, "Liquid level sensor using ultrasonic lamb waves," Ultrasonics 41, 319-322 (2003).
[CrossRef] [PubMed]

Kuznetsova, I. E.

V. E. Sakharov, S. A. Kuznetsov, B. D. Zaitsev, I. E. Kuznetsova, and S. G. Joshi, "Liquid level sensor using ultrasonic lamb waves," Ultrasonics 41, 319-322 (2003).
[CrossRef] [PubMed]

Lee, C. E.

C. E. Lee and H. F. Taylor, "Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source," J. Lightwave Technol. 9, 129-134 (1991).
[CrossRef]

Lee, J. J.

Lin, L. Z.

H. W. Rong, G. Y. Jun, and L. Z. Lin, "The temperature compensation design of an optical fiber liquid-level sensor with Fabry-Perot cavity," Acta Photon. Sin. 34, 1810-1813 (2005).

May, R. G.

Miller, W. V.

T. A. Tran, W. V. Miller, K. A. Murphy, and Ashish, "Stabilized extrinsic fiber-optic Fizeau sensor for surface acoustic wave detection," J. Lightwave Technol. 10, 1499-1506 (1992).
[CrossRef]

Murphy, K. A.

T. A. Tran, W. V. Miller, K. A. Murphy, and Ashish, "Stabilized extrinsic fiber-optic Fizeau sensor for surface acoustic wave detection," J. Lightwave Technol. 10, 1499-1506 (1992).
[CrossRef]

K. A. Murphy, M. F. Gunther, A. M. Vengsarkar, and R. O. Claus, "Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors," Opt. Lett. 16, 273-275 (1991).
[CrossRef] [PubMed]

Musayev, E.

E. Musayev and S. E. Karlik, "A novel liquid level detection method and its implementation," Sens. Actuators A 109, 21-24 (2003).
[CrossRef]

Perez, C. S.

Poghossian, A.

A. Poghossian, J. W. Schultze, and M. J. Schoning, "Application of a (bio-)chemical sensor (ISFET) for the detection of physical parameters in liquids," Electrochim. Acta 48, 3289-3297 (2003).
[CrossRef]

Rees, N. D.

Romero, G. E. S.

Rong, H. W.

H. W. Rong, G. Y. Jun, and L. Z. Lin, "The temperature compensation design of an optical fiber liquid-level sensor with Fabry-Perot cavity," Acta Photon. Sin. 34, 1810-1813 (2005).

Sakharov, V. E.

V. E. Sakharov, S. A. Kuznetsov, B. D. Zaitsev, I. E. Kuznetsova, and S. G. Joshi, "Liquid level sensor using ultrasonic lamb waves," Ultrasonics 41, 319-322 (2003).
[CrossRef] [PubMed]

Schmidt, M.

Schoning, M. J.

A. Poghossian, J. W. Schultze, and M. J. Schoning, "Application of a (bio-)chemical sensor (ISFET) for the detection of physical parameters in liquids," Electrochim. Acta 48, 3289-3297 (2003).
[CrossRef]

Schultze, J. W.

A. Poghossian, J. W. Schultze, and M. J. Schoning, "Application of a (bio-)chemical sensor (ISFET) for the detection of physical parameters in liquids," Electrochim. Acta 48, 3289-3297 (2003).
[CrossRef]

Song, S. D.

G. J. Zhang, Q. X. Yu, and S. D. Song, "An investigation of interference/intensity demodulated fiber-optic Fabry-Perot cavity sensor," Sens. Actuators A 116, 33-38 (2004).
[CrossRef]

Staines, S. E.

Tatam, R. P.

Taylor, H. F.

C. E. Lee and H. F. Taylor, "Fiber-optic Fabry-Perot temperature sensor using a low-coherence light source," J. Lightwave Technol. 9, 129-134 (1991).
[CrossRef]

Tran, T. A.

T. A. Tran, W. V. Miller, K. A. Murphy, and Ashish, "Stabilized extrinsic fiber-optic Fizeau sensor for surface acoustic wave detection," J. Lightwave Technol. 10, 1499-1506 (1992).
[CrossRef]

Valenzuela, A. G.

Vengsarkar, A. M.

Wang, A. B.

Wang, J.

Wang, T. Y.

T. Y. Wang, S. X. Zheng, and Z. G. Yang, "A high precision displacement sensor using a low-finesse fiber-optic Fabry-Perot interferometer," Sens. Actuators A 69, 134-138 (1998).
[CrossRef]

Wang, Z. Y.

Xiao, H.

Yang, C. N.

C. N. Yang, S. P. Chen, and G. G. Yang, "Fiber optical liquid level sensor under cryogenic environment," Sens. Actuators A 94, 69-75 (2001).
[CrossRef]

Yang, G. G.

C. N. Yang, S. P. Chen, and G. G. Yang, "Fiber optical liquid level sensor under cryogenic environment," Sens. Actuators A 94, 69-75 (2001).
[CrossRef]

Yang, Z. G.

T. Y. Wang, S. X. Zheng, and Z. G. Yang, "A high precision displacement sensor using a low-finesse fiber-optic Fabry-Perot interferometer," Sens. Actuators A 69, 134-138 (1998).
[CrossRef]

Yu, Q. X.

G. J. Zhang, Q. X. Yu, and S. D. Song, "An investigation of interference/intensity demodulated fiber-optic Fabry-Perot cavity sensor," Sens. Actuators A 116, 33-38 (2004).
[CrossRef]

Yuan, L. B.

Zaitsev, B. D.

V. E. Sakharov, S. A. Kuznetsov, B. D. Zaitsev, I. E. Kuznetsova, and S. G. Joshi, "Liquid level sensor using ultrasonic lamb waves," Ultrasonics 41, 319-322 (2003).
[CrossRef] [PubMed]

Zhang, G. J.

G. J. Zhang, Q. X. Yu, and S. D. Song, "An investigation of interference/intensity demodulated fiber-optic Fabry-Perot cavity sensor," Sens. Actuators A 116, 33-38 (2004).
[CrossRef]

Zhao, W.

Zheng, S. X.

T. Y. Wang, S. X. Zheng, and Z. G. Yang, "A high precision displacement sensor using a low-finesse fiber-optic Fabry-Perot interferometer," Sens. Actuators A 69, 134-138 (1998).
[CrossRef]

Acta Photon. Sin.

H. W. Rong, G. Y. Jun, and L. Z. Lin, "The temperature compensation design of an optical fiber liquid-level sensor with Fabry-Perot cavity," Acta Photon. Sin. 34, 1810-1813 (2005).

Appl. Opt.

Electrochim. Acta

A. Poghossian, J. W. Schultze, and M. J. Schoning, "Application of a (bio-)chemical sensor (ISFET) for the detection of physical parameters in liquids," Electrochim. Acta 48, 3289-3297 (2003).
[CrossRef]

J. Lightwave Technol.

Opt. Lasers Eng.

H. Golnabi, "Design and operation of a fiber optic sensor for liquid level detection," Opt. Lasers Eng. 41, 801-812 (2004).
[CrossRef]

Opt. Lett.

Sens. Actuators A

E. Musayev and S. E. Karlik, "A novel liquid level detection method and its implementation," Sens. Actuators A 109, 21-24 (2003).
[CrossRef]

T. Y. Wang, S. X. Zheng, and Z. G. Yang, "A high precision displacement sensor using a low-finesse fiber-optic Fabry-Perot interferometer," Sens. Actuators A 69, 134-138 (1998).
[CrossRef]

G. J. Zhang, Q. X. Yu, and S. D. Song, "An investigation of interference/intensity demodulated fiber-optic Fabry-Perot cavity sensor," Sens. Actuators A 116, 33-38 (2004).
[CrossRef]

C. N. Yang, S. P. Chen, and G. G. Yang, "Fiber optical liquid level sensor under cryogenic environment," Sens. Actuators A 94, 69-75 (2001).
[CrossRef]

Ultrasonics

V. E. Sakharov, S. A. Kuznetsov, B. D. Zaitsev, I. E. Kuznetsova, and S. G. Joshi, "Liquid level sensor using ultrasonic lamb waves," Ultrasonics 41, 319-322 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(Color online) Configuration of the optical fiber liquid-level sensor.

Fig. 2
Fig. 2

(Color online) Photograph of the optical fiber liquid-level sensor.

Fig. 3
Fig. 3

Schematics of a convexity bonded on the center of the elastic silicon layer. The relevant parameters are selected to measure a 0 3.5   m water level.

Fig. 4
Fig. 4

Experimental setup of the sensor.

Fig. 5
Fig. 5

Oscilloscope trace of the observed fringes for increasing air pressure 0 0 .24   MPa .

Fig. 6
Fig. 6

Oscilloscope trace of the observed half-fringes of the PQ segment and the MN segment for increasing air pressures (a) 0 0 .0348   MPa and (b) 0 0 .0324   MPa , respectively. The minimum resolution of the water level is (a) 1.221 mV / mm and (b) 1.3112 mV / mm .

Fig. 7
Fig. 7

(Color online) Variations of output intensity ( 3.13 4.18 μ W ) with increasing air pressures ( 0.8 3 6 0 . 2   kPa ) .

Fig. 8
Fig. 8

(Color online) Static characteristic curves of the PCC without pressures. The signal channel and the reference channel possess stabilities of 2.8571% and 3.9773%, respectively.

Fig. 9
Fig. 9

Dynamic characteristic curves of the sensor with increasing air pressures. The ratio curve being adverse to the signal curve indicates that the output curve of the reference light can be seen as an approximate line for the optimized sensing system. The reference light possesses stability of 0.0878%.

Fig. 10
Fig. 10

Repeatable characteristic curves of the sensor. The static curves without pressures (before point A, in the BC segment, and after point D), and the dynamic curves with increasing pressures (from point A to point B) and decreasing pressures (from point C to point D), respectively. The reference light possesses stability of 0.1164%.

Fig. 11
Fig. 11

Output dynamic curves of the sensor with increasing 0 3 . 5   m water level. The reference light possesses stability of 0.0599%.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I r I i = R 1 + R 2 2 R 1 R 2  cos   ϕ 1 + R 1 R 2 2 R 1 R 2  cos   ϕ ,
ω 0 = 3 P R 4 ( 1 γ 2 ) 16 E h 3 .
ω 0 = 3 ( 1 γ 2 ) P R 4 16 E h 3 [ 1 ( r R ) 4 4 ( r R ) 2 log   R r ] ,

Metrics