## Abstract

A nylon bar with different surface roughness is used as a simulation sample of
biological tissue for the determination of optical properties by using the spatially resolved steady-state
diffuse reflection technique. The results obtained indicate that surface roughness has some effects
on the determination of the optical properties of the nylon bar. The determined reduced scattering
coefficient decreases with the decrease of the surface roughness of the nylon bar and goes to a
constant for the lower surface roughness, and the determined absorption coefficient increases with the
decrease of the surface roughness of the nylon bar. Consequently, the optical properties of the tissues obtained by
the spatially resolved steady-state diffuse reflection technique should be modified.

© 2007 Optical Society of America

Full Article |

PDF Article
### Equations (31)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$R\left(\rho \right)=\frac{1}{4\pi}\left[{z}_{0}\left({\text{\mu}}_{eff}+\frac{1}{{r}_{1}}\right)\frac{\mathrm{exp}(-{\mu}_{eff}{r}_{1})}{{{r}_{1}}^{2}}+\left({z}_{0}+2{z}_{b}\right)\times \left({\text{\mu}}_{eff}+\frac{1}{{r}_{2}}\right)\frac{\mathrm{exp}\left(-{\mu}_{eff}{r}_{2}\right)}{{{r}_{2}}^{2}}\right]\text{,}$$
(2)
$${z}_{0}={\left({\text{\mu}}_{a}+{\text{\mu}}_{s}\prime \right)}^{-1}\text{,}{z}_{b}=2D\text{\hspace{0.17em}}\frac{1+{R}_{eff}}{1-{R}_{eff}}\text{,}$$
(3)
$${{r}_{1}}^{2}={{z}_{0}}^{2}+{\rho}^{2}\text{,}{{r}_{2}}^{2}={\left({z}_{0}+2{z}_{b}\right)}^{2}+{\rho}^{2}\text{,}$$
(4)
D=1/3\left[\left({\text{\mu}}_{a}+{\text{\mu}}_{s}\prime \right)\right]
(5)
{\text{\mu}}_{eff}={\left[3{\text{\mu}}_{a}\left({\text{\mu}}_{a}+{\text{\mu}}_{s}\prime \right)\right]}^{1/2}
(7)
{\text{\mu}}_{s}\prime
(14)
{\text{\mu}}_{s}\prime
(16)
{\text{\mu}}_{s}\prime
(17)
\left(632.8\text{\hspace{0.17em} nm}\right)
(18)
\left(1.04\text{\hspace{0.17em} kHz}\right)
(19)
{\text{\mu}}_{s}\prime
(21)
7\text{\hspace{0.17em} cm}\times \text{7 \hspace{0.17em} cm}\times \text{4 \hspace{0.17em} cm}
(22)
\text{7 \hspace{0.17em} cm}\times \text{7 \hspace{0.17em} cm}
(26)
\left(Ra=2.636\text{\hspace{0.17em} \mu m}\right)
(28)
{\text{\mu}}_{s}\prime
(29)
Ra=2.636\text{\hspace{0.17em} \mu m}