Abstract

What is believed to be a new approach for the design and analysis of a reconfigurable optical square pulse generator using the concept of temporal optical integration and the digital signal processing method is presented. The reconfigurable square pulse generator is synthesized using compact active semiconductor-based waveguide technology, and it consists simply of the cascade of a tunable microring resonator (or a tunable all-pole filter) and a tunable asymmetrical Mach–Zehnder interferometer (or a tunable all-zero filter). The reconfigurable generator can convert an input picosecond pulse (i.e., soliton or Gaussian pulse) into an optical square pulse. The pulse width of the generated square pulse can be adjusted by controlling the time delay of a variable delay element in the tunable all-zero filter. The reconfigurable generator can convert an input picosecond pulse train into return-to-zero (RZ) and non-return-to-zero (NRZ) signals with square pulse shapes. The repetition rates of the generated RZ and NRZ signals can be varied by adjusting the bit period of the input picosecond pulse train, the input pulse width, and the time delay of the variable delay element. The effect of the deviation of the parameter values on the generator performance is also studied.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kodama and S. Wabnitz, "Compensation of NRZ signal distortion by initial frequency shifting," Electron. Lett. 31, 1761-1762 (1995).
    [CrossRef]
  2. T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, "Multiple-output, 100 Gbits all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse," Electron. Lett. 30, 1959-1960 (1994).
    [CrossRef]
  3. J. H. Lee, P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, "All-optical modulation and demultiplexing systems with significant timing jitter tolerance through incorporation of pulse-shaping fiber Bragg gratings," IEEE Photon. Technol. Lett. 14, 203-205 (2002).
    [CrossRef]
  4. A. L. J. Teixeira, P. S. André, M. Lima, J. F. da Rocha, and J. L. Pinto, "Asynchronous optical performance monitor techniques for DWDM optical networks," in Proceedings of Fourth International Conference on Transparent Optical Networks (ICTON, 2002), Vol. 1, pp. 1-5.
  5. R. Llorente, J. H. Lee, P. J. Almeida, M. Ibsen, D. J. Richardson, J. Marti, and F. Ramos, "Novel orthogonal wavelength division multiplexing (OWDM) scheme: theory and experiment," in Proceedings of Sixteenth Annual Meeting of IEEE (LEOS, 2003), Vol. 2, pp. 547-548.
  6. K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).
    [CrossRef]
  7. D. U. Noske, N. Pandit, and J. R. Taylor, "Picosecond square pulse generation using nonlinear fibre loop mirror," Electron. Lett. 28, 908-909 (1992).
    [CrossRef]
  8. S. Osawa, N. Wada, K. Kitayama, and W. Chujo, "Arbitrarily-shaped optical pulse train synthesis using weight/phase-programmable 32-tapped delay line waveguide filter," Electron. Lett. 37, 1356-1357 (2001).
    [CrossRef]
  9. S. Longhi, M. Marano, P. Laporta, and V. Pruneri, "Multiplication and reshaping of high-repetition-rate optical pulse trains using highly dispersive fiber Bragg gratings," IEEE Photon. Technol. Lett. 12, 1498-1500 (2000).
    [CrossRef]
  10. N. Q. Ngo, "Optical integrator for optical dark soliton detection and pulse shaping," Appl. Opt. 45, 6785-6791 (2006).
    [CrossRef] [PubMed]
  11. G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems, 2nd ed. (Addison-Wesley, 1990).
  12. W. J. Tompkins and J. G. Webster, eds., Design of Microcomputers-Based Medical Instrumentation (Prentice-Hall, 1981), Chap. 3.
  13. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, 1989).
  14. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).
  15. N. Q. Ngo and L. N. Binh, "Novel realization of monotonic Butterworth-type lowpass, highpass and bandpass optical filters using phase-modulated fiber-optic interferometers and ring resonators," J. Lightwave Technol. 12, 827-841 (1994).
    [CrossRef]
  16. K. Djordev, S.-J. Choi, S.-J. Choi, and P. D. Dapkus, "Gain trimming of the resonant characteristics in vertically coupled InP microdisk switches," Appl. Phys. Lett. 80, 3467-3469 (2002).
    [CrossRef]
  17. S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, "An eight-channel demultiplexing switch array using vertically coupled active semiconductor microdisk resonators," IEEE Photon. Technol. Lett. 16, 2517-2519 (2004).
    [CrossRef]
  18. K. Djordev, S.-J. Choi, S.-J. Choi, and P. D. Dapkus, "Active semiconductor microdisk devices," J. Lightwave Technol. 20, 105-113 (2002).
    [CrossRef]
  19. K. Djordev, S.-J. Choi, S.-J. Choi, and P. D. Dapkus, "Study of the effects of the geometry on the performance of vertically coupled InP microdisk resonators," J. Lightwave Technol. 20, 1485-1492 (2002).
    [CrossRef]
  20. N. Q. Ngo and L. N. Binh, "Synthesis of tunable optical waveguide filters using digital signal processing technique," J. Lightwave Technol. 24, 3520-3531 (2006).
    [CrossRef]
  21. M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, "Integrated resonance-enhanced variable optical delay lines," IEEE Photon. Technol. Lett. 17, 834-836 (2005).
    [CrossRef]

2006 (2)

2005 (1)

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, "Integrated resonance-enhanced variable optical delay lines," IEEE Photon. Technol. Lett. 17, 834-836 (2005).
[CrossRef]

2004 (2)

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, "An eight-channel demultiplexing switch array using vertically coupled active semiconductor microdisk resonators," IEEE Photon. Technol. Lett. 16, 2517-2519 (2004).
[CrossRef]

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).
[CrossRef]

2002 (4)

K. Djordev, S.-J. Choi, S.-J. Choi, and P. D. Dapkus, "Active semiconductor microdisk devices," J. Lightwave Technol. 20, 105-113 (2002).
[CrossRef]

K. Djordev, S.-J. Choi, S.-J. Choi, and P. D. Dapkus, "Study of the effects of the geometry on the performance of vertically coupled InP microdisk resonators," J. Lightwave Technol. 20, 1485-1492 (2002).
[CrossRef]

J. H. Lee, P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, "All-optical modulation and demultiplexing systems with significant timing jitter tolerance through incorporation of pulse-shaping fiber Bragg gratings," IEEE Photon. Technol. Lett. 14, 203-205 (2002).
[CrossRef]

K. Djordev, S.-J. Choi, S.-J. Choi, and P. D. Dapkus, "Gain trimming of the resonant characteristics in vertically coupled InP microdisk switches," Appl. Phys. Lett. 80, 3467-3469 (2002).
[CrossRef]

2001 (1)

S. Osawa, N. Wada, K. Kitayama, and W. Chujo, "Arbitrarily-shaped optical pulse train synthesis using weight/phase-programmable 32-tapped delay line waveguide filter," Electron. Lett. 37, 1356-1357 (2001).
[CrossRef]

2000 (1)

S. Longhi, M. Marano, P. Laporta, and V. Pruneri, "Multiplication and reshaping of high-repetition-rate optical pulse trains using highly dispersive fiber Bragg gratings," IEEE Photon. Technol. Lett. 12, 1498-1500 (2000).
[CrossRef]

1995 (1)

S. Kodama and S. Wabnitz, "Compensation of NRZ signal distortion by initial frequency shifting," Electron. Lett. 31, 1761-1762 (1995).
[CrossRef]

1994 (2)

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, "Multiple-output, 100 Gbits all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse," Electron. Lett. 30, 1959-1960 (1994).
[CrossRef]

N. Q. Ngo and L. N. Binh, "Novel realization of monotonic Butterworth-type lowpass, highpass and bandpass optical filters using phase-modulated fiber-optic interferometers and ring resonators," J. Lightwave Technol. 12, 827-841 (1994).
[CrossRef]

1992 (1)

D. U. Noske, N. Pandit, and J. R. Taylor, "Picosecond square pulse generation using nonlinear fibre loop mirror," Electron. Lett. 28, 908-909 (1992).
[CrossRef]

Almeida, P. J.

R. Llorente, J. H. Lee, P. J. Almeida, M. Ibsen, D. J. Richardson, J. Marti, and F. Ramos, "Novel orthogonal wavelength division multiplexing (OWDM) scheme: theory and experiment," in Proceedings of Sixteenth Annual Meeting of IEEE (LEOS, 2003), Vol. 2, pp. 547-548.

André, P. S.

A. L. J. Teixeira, P. S. André, M. Lima, J. F. da Rocha, and J. L. Pinto, "Asynchronous optical performance monitor techniques for DWDM optical networks," in Proceedings of Fourth International Conference on Transparent Optical Networks (ICTON, 2002), Vol. 1, pp. 1-5.

Binh, L. N.

N. Q. Ngo and L. N. Binh, "Synthesis of tunable optical waveguide filters using digital signal processing technique," J. Lightwave Technol. 24, 3520-3531 (2006).
[CrossRef]

N. Q. Ngo and L. N. Binh, "Novel realization of monotonic Butterworth-type lowpass, highpass and bandpass optical filters using phase-modulated fiber-optic interferometers and ring resonators," J. Lightwave Technol. 12, 827-841 (1994).
[CrossRef]

Cappuzzo, M. A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, "Integrated resonance-enhanced variable optical delay lines," IEEE Photon. Technol. Lett. 17, 834-836 (2005).
[CrossRef]

Chen, E.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, "Integrated resonance-enhanced variable optical delay lines," IEEE Photon. Technol. Lett. 17, 834-836 (2005).
[CrossRef]

Choi, S. J.

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, "An eight-channel demultiplexing switch array using vertically coupled active semiconductor microdisk resonators," IEEE Photon. Technol. Lett. 16, 2517-2519 (2004).
[CrossRef]

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, "An eight-channel demultiplexing switch array using vertically coupled active semiconductor microdisk resonators," IEEE Photon. Technol. Lett. 16, 2517-2519 (2004).
[CrossRef]

Choi, S.-J.

Chujo, W.

S. Osawa, N. Wada, K. Kitayama, and W. Chujo, "Arbitrarily-shaped optical pulse train synthesis using weight/phase-programmable 32-tapped delay line waveguide filter," Electron. Lett. 37, 1356-1357 (2001).
[CrossRef]

da Rocha, J. F.

A. L. J. Teixeira, P. S. André, M. Lima, J. F. da Rocha, and J. L. Pinto, "Asynchronous optical performance monitor techniques for DWDM optical networks," in Proceedings of Fourth International Conference on Transparent Optical Networks (ICTON, 2002), Vol. 1, pp. 1-5.

Dapkus, P. D.

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, "An eight-channel demultiplexing switch array using vertically coupled active semiconductor microdisk resonators," IEEE Photon. Technol. Lett. 16, 2517-2519 (2004).
[CrossRef]

K. Djordev, S.-J. Choi, S.-J. Choi, and P. D. Dapkus, "Active semiconductor microdisk devices," J. Lightwave Technol. 20, 105-113 (2002).
[CrossRef]

K. Djordev, S.-J. Choi, S.-J. Choi, and P. D. Dapkus, "Study of the effects of the geometry on the performance of vertically coupled InP microdisk resonators," J. Lightwave Technol. 20, 1485-1492 (2002).
[CrossRef]

K. Djordev, S.-J. Choi, S.-J. Choi, and P. D. Dapkus, "Gain trimming of the resonant characteristics in vertically coupled InP microdisk switches," Appl. Phys. Lett. 80, 3467-3469 (2002).
[CrossRef]

Djordev, K.

Franklin, G. F.

G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems, 2nd ed. (Addison-Wesley, 1990).

Gasparyan, A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, "Integrated resonance-enhanced variable optical delay lines," IEEE Photon. Technol. Lett. 17, 834-836 (2005).
[CrossRef]

Gomez, L. T.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, "Integrated resonance-enhanced variable optical delay lines," IEEE Photon. Technol. Lett. 17, 834-836 (2005).
[CrossRef]

Grange, J. L.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, "Integrated resonance-enhanced variable optical delay lines," IEEE Photon. Technol. Lett. 17, 834-836 (2005).
[CrossRef]

Griffin, A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, "Integrated resonance-enhanced variable optical delay lines," IEEE Photon. Technol. Lett. 17, 834-836 (2005).
[CrossRef]

Ibsen, M.

J. H. Lee, P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, "All-optical modulation and demultiplexing systems with significant timing jitter tolerance through incorporation of pulse-shaping fiber Bragg gratings," IEEE Photon. Technol. Lett. 14, 203-205 (2002).
[CrossRef]

R. Llorente, J. H. Lee, P. J. Almeida, M. Ibsen, D. J. Richardson, J. Marti, and F. Ramos, "Novel orthogonal wavelength division multiplexing (OWDM) scheme: theory and experiment," in Proceedings of Sixteenth Annual Meeting of IEEE (LEOS, 2003), Vol. 2, pp. 547-548.

Kasper, A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, "Integrated resonance-enhanced variable optical delay lines," IEEE Photon. Technol. Lett. 17, 834-836 (2005).
[CrossRef]

Kawanishi, S.

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, "Multiple-output, 100 Gbits all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse," Electron. Lett. 30, 1959-1960 (1994).
[CrossRef]

Kitayama, K.

S. Osawa, N. Wada, K. Kitayama, and W. Chujo, "Arbitrarily-shaped optical pulse train synthesis using weight/phase-programmable 32-tapped delay line waveguide filter," Electron. Lett. 37, 1356-1357 (2001).
[CrossRef]

Kodama, S.

S. Kodama and S. Wabnitz, "Compensation of NRZ signal distortion by initial frequency shifting," Electron. Lett. 31, 1761-1762 (1995).
[CrossRef]

Kominato, T.

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).
[CrossRef]

Laporta, P.

S. Longhi, M. Marano, P. Laporta, and V. Pruneri, "Multiplication and reshaping of high-repetition-rate optical pulse trains using highly dispersive fiber Bragg gratings," IEEE Photon. Technol. Lett. 12, 1498-1500 (2000).
[CrossRef]

Laskowski, E. J.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, "Integrated resonance-enhanced variable optical delay lines," IEEE Photon. Technol. Lett. 17, 834-836 (2005).
[CrossRef]

Lee, J. H.

J. H. Lee, P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, "All-optical modulation and demultiplexing systems with significant timing jitter tolerance through incorporation of pulse-shaping fiber Bragg gratings," IEEE Photon. Technol. Lett. 14, 203-205 (2002).
[CrossRef]

R. Llorente, J. H. Lee, P. J. Almeida, M. Ibsen, D. J. Richardson, J. Marti, and F. Ramos, "Novel orthogonal wavelength division multiplexing (OWDM) scheme: theory and experiment," in Proceedings of Sixteenth Annual Meeting of IEEE (LEOS, 2003), Vol. 2, pp. 547-548.

Lima, M.

A. L. J. Teixeira, P. S. André, M. Lima, J. F. da Rocha, and J. L. Pinto, "Asynchronous optical performance monitor techniques for DWDM optical networks," in Proceedings of Fourth International Conference on Transparent Optical Networks (ICTON, 2002), Vol. 1, pp. 1-5.

Llorente, R.

R. Llorente, J. H. Lee, P. J. Almeida, M. Ibsen, D. J. Richardson, J. Marti, and F. Ramos, "Novel orthogonal wavelength division multiplexing (OWDM) scheme: theory and experiment," in Proceedings of Sixteenth Annual Meeting of IEEE (LEOS, 2003), Vol. 2, pp. 547-548.

Longhi, S.

S. Longhi, M. Marano, P. Laporta, and V. Pruneri, "Multiplication and reshaping of high-repetition-rate optical pulse trains using highly dispersive fiber Bragg gratings," IEEE Photon. Technol. Lett. 12, 1498-1500 (2000).
[CrossRef]

Madsen, C. K.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, "Integrated resonance-enhanced variable optical delay lines," IEEE Photon. Technol. Lett. 17, 834-836 (2005).
[CrossRef]

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).

Marano, M.

S. Longhi, M. Marano, P. Laporta, and V. Pruneri, "Multiplication and reshaping of high-repetition-rate optical pulse trains using highly dispersive fiber Bragg gratings," IEEE Photon. Technol. Lett. 12, 1498-1500 (2000).
[CrossRef]

Marti, J.

R. Llorente, J. H. Lee, P. J. Almeida, M. Ibsen, D. J. Richardson, J. Marti, and F. Ramos, "Novel orthogonal wavelength division multiplexing (OWDM) scheme: theory and experiment," in Proceedings of Sixteenth Annual Meeting of IEEE (LEOS, 2003), Vol. 2, pp. 547-548.

Morioka, T.

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, "Multiple-output, 100 Gbits all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse," Electron. Lett. 30, 1959-1960 (1994).
[CrossRef]

Ngo, N. Q.

N. Q. Ngo, "Optical integrator for optical dark soliton detection and pulse shaping," Appl. Opt. 45, 6785-6791 (2006).
[CrossRef] [PubMed]

N. Q. Ngo and L. N. Binh, "Synthesis of tunable optical waveguide filters using digital signal processing technique," J. Lightwave Technol. 24, 3520-3531 (2006).
[CrossRef]

N. Q. Ngo and L. N. Binh, "Novel realization of monotonic Butterworth-type lowpass, highpass and bandpass optical filters using phase-modulated fiber-optic interferometers and ring resonators," J. Lightwave Technol. 12, 827-841 (1994).
[CrossRef]

Noske, D. U.

D. U. Noske, N. Pandit, and J. R. Taylor, "Picosecond square pulse generation using nonlinear fibre loop mirror," Electron. Lett. 28, 908-909 (1992).
[CrossRef]

Okamoto, K.

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).
[CrossRef]

Oppenheim, A. V.

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, 1989).

Osawa, S.

S. Osawa, N. Wada, K. Kitayama, and W. Chujo, "Arbitrarily-shaped optical pulse train synthesis using weight/phase-programmable 32-tapped delay line waveguide filter," Electron. Lett. 37, 1356-1357 (2001).
[CrossRef]

Pandit, N.

D. U. Noske, N. Pandit, and J. R. Taylor, "Picosecond square pulse generation using nonlinear fibre loop mirror," Electron. Lett. 28, 908-909 (1992).
[CrossRef]

Patel, S. S.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, "Integrated resonance-enhanced variable optical delay lines," IEEE Photon. Technol. Lett. 17, 834-836 (2005).
[CrossRef]

Peng, Z.

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, "An eight-channel demultiplexing switch array using vertically coupled active semiconductor microdisk resonators," IEEE Photon. Technol. Lett. 16, 2517-2519 (2004).
[CrossRef]

Petropoulos, P.

J. H. Lee, P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, "All-optical modulation and demultiplexing systems with significant timing jitter tolerance through incorporation of pulse-shaping fiber Bragg gratings," IEEE Photon. Technol. Lett. 14, 203-205 (2002).
[CrossRef]

Pinto, J. L.

A. L. J. Teixeira, P. S. André, M. Lima, J. F. da Rocha, and J. L. Pinto, "Asynchronous optical performance monitor techniques for DWDM optical networks," in Proceedings of Fourth International Conference on Transparent Optical Networks (ICTON, 2002), Vol. 1, pp. 1-5.

Powell, J. D.

G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems, 2nd ed. (Addison-Wesley, 1990).

Pruneri, V.

S. Longhi, M. Marano, P. Laporta, and V. Pruneri, "Multiplication and reshaping of high-repetition-rate optical pulse trains using highly dispersive fiber Bragg gratings," IEEE Photon. Technol. Lett. 12, 1498-1500 (2000).
[CrossRef]

Ramos, F.

R. Llorente, J. H. Lee, P. J. Almeida, M. Ibsen, D. J. Richardson, J. Marti, and F. Ramos, "Novel orthogonal wavelength division multiplexing (OWDM) scheme: theory and experiment," in Proceedings of Sixteenth Annual Meeting of IEEE (LEOS, 2003), Vol. 2, pp. 547-548.

Rasras, M. S.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, "Integrated resonance-enhanced variable optical delay lines," IEEE Photon. Technol. Lett. 17, 834-836 (2005).
[CrossRef]

Richardson, D. J.

J. H. Lee, P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, "All-optical modulation and demultiplexing systems with significant timing jitter tolerance through incorporation of pulse-shaping fiber Bragg gratings," IEEE Photon. Technol. Lett. 14, 203-205 (2002).
[CrossRef]

R. Llorente, J. H. Lee, P. J. Almeida, M. Ibsen, D. J. Richardson, J. Marti, and F. Ramos, "Novel orthogonal wavelength division multiplexing (OWDM) scheme: theory and experiment," in Proceedings of Sixteenth Annual Meeting of IEEE (LEOS, 2003), Vol. 2, pp. 547-548.

Saruwatari, M.

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, "Multiple-output, 100 Gbits all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse," Electron. Lett. 30, 1959-1960 (1994).
[CrossRef]

Schafer, R. W.

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, 1989).

Shibata, T.

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).
[CrossRef]

Takahashi, H.

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).
[CrossRef]

Takara, H.

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, "Multiple-output, 100 Gbits all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse," Electron. Lett. 30, 1959-1960 (1994).
[CrossRef]

Takiguchi, K.

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).
[CrossRef]

Taylor, J. R.

D. U. Noske, N. Pandit, and J. R. Taylor, "Picosecond square pulse generation using nonlinear fibre loop mirror," Electron. Lett. 28, 908-909 (1992).
[CrossRef]

Teh, P. C.

J. H. Lee, P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, "All-optical modulation and demultiplexing systems with significant timing jitter tolerance through incorporation of pulse-shaping fiber Bragg gratings," IEEE Photon. Technol. Lett. 14, 203-205 (2002).
[CrossRef]

Teixeira, A. L. J.

A. L. J. Teixeira, P. S. André, M. Lima, J. F. da Rocha, and J. L. Pinto, "Asynchronous optical performance monitor techniques for DWDM optical networks," in Proceedings of Fourth International Conference on Transparent Optical Networks (ICTON, 2002), Vol. 1, pp. 1-5.

Tompkins, W. J.

W. J. Tompkins and J. G. Webster, eds., Design of Microcomputers-Based Medical Instrumentation (Prentice-Hall, 1981), Chap. 3.

Wabnitz, S.

S. Kodama and S. Wabnitz, "Compensation of NRZ signal distortion by initial frequency shifting," Electron. Lett. 31, 1761-1762 (1995).
[CrossRef]

Wada, N.

S. Osawa, N. Wada, K. Kitayama, and W. Chujo, "Arbitrarily-shaped optical pulse train synthesis using weight/phase-programmable 32-tapped delay line waveguide filter," Electron. Lett. 37, 1356-1357 (2001).
[CrossRef]

Webster, J. G.

W. J. Tompkins and J. G. Webster, eds., Design of Microcomputers-Based Medical Instrumentation (Prentice-Hall, 1981), Chap. 3.

Wong-Foy, A.

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, "Integrated resonance-enhanced variable optical delay lines," IEEE Photon. Technol. Lett. 17, 834-836 (2005).
[CrossRef]

Workman, M. L.

G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems, 2nd ed. (Addison-Wesley, 1990).

Yang, Q.

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, "An eight-channel demultiplexing switch array using vertically coupled active semiconductor microdisk resonators," IEEE Photon. Technol. Lett. 16, 2517-2519 (2004).
[CrossRef]

Zhao, J. H.

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. Djordev, S.-J. Choi, S.-J. Choi, and P. D. Dapkus, "Gain trimming of the resonant characteristics in vertically coupled InP microdisk switches," Appl. Phys. Lett. 80, 3467-3469 (2002).
[CrossRef]

Electron. Lett. (5)

S. Kodama and S. Wabnitz, "Compensation of NRZ signal distortion by initial frequency shifting," Electron. Lett. 31, 1761-1762 (1995).
[CrossRef]

T. Morioka, S. Kawanishi, H. Takara, and M. Saruwatari, "Multiple-output, 100 Gbits all-optical demultiplexer based on multichannel four-wave mixing pumped by a linearly-chirped square pulse," Electron. Lett. 30, 1959-1960 (1994).
[CrossRef]

K. Takiguchi, K. Okamoto, T. Kominato, H. Takahashi, and T. Shibata, "Flexible pulse waveform generation using silica-waveguide-based spectrum synthesis circuit," Electron. Lett. 40, 537-538 (2004).
[CrossRef]

D. U. Noske, N. Pandit, and J. R. Taylor, "Picosecond square pulse generation using nonlinear fibre loop mirror," Electron. Lett. 28, 908-909 (1992).
[CrossRef]

S. Osawa, N. Wada, K. Kitayama, and W. Chujo, "Arbitrarily-shaped optical pulse train synthesis using weight/phase-programmable 32-tapped delay line waveguide filter," Electron. Lett. 37, 1356-1357 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

S. Longhi, M. Marano, P. Laporta, and V. Pruneri, "Multiplication and reshaping of high-repetition-rate optical pulse trains using highly dispersive fiber Bragg gratings," IEEE Photon. Technol. Lett. 12, 1498-1500 (2000).
[CrossRef]

J. H. Lee, P. C. Teh, P. Petropoulos, M. Ibsen, and D. J. Richardson, "All-optical modulation and demultiplexing systems with significant timing jitter tolerance through incorporation of pulse-shaping fiber Bragg gratings," IEEE Photon. Technol. Lett. 14, 203-205 (2002).
[CrossRef]

S. J. Choi, Z. Peng, Q. Yang, S. J. Choi, and P. D. Dapkus, "An eight-channel demultiplexing switch array using vertically coupled active semiconductor microdisk resonators," IEEE Photon. Technol. Lett. 16, 2517-2519 (2004).
[CrossRef]

M. S. Rasras, C. K. Madsen, M. A. Cappuzzo, E. Chen, L. T. Gomez, E. J. Laskowski, A. Griffin, A. Wong-Foy, A. Gasparyan, A. Kasper, J. L. Grange, and S. S. Patel, "Integrated resonance-enhanced variable optical delay lines," IEEE Photon. Technol. Lett. 17, 834-836 (2005).
[CrossRef]

J. Lightwave Technol. (4)

Other (6)

A. L. J. Teixeira, P. S. André, M. Lima, J. F. da Rocha, and J. L. Pinto, "Asynchronous optical performance monitor techniques for DWDM optical networks," in Proceedings of Fourth International Conference on Transparent Optical Networks (ICTON, 2002), Vol. 1, pp. 1-5.

R. Llorente, J. H. Lee, P. J. Almeida, M. Ibsen, D. J. Richardson, J. Marti, and F. Ramos, "Novel orthogonal wavelength division multiplexing (OWDM) scheme: theory and experiment," in Proceedings of Sixteenth Annual Meeting of IEEE (LEOS, 2003), Vol. 2, pp. 547-548.

G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems, 2nd ed. (Addison-Wesley, 1990).

W. J. Tompkins and J. G. Webster, eds., Design of Microcomputers-Based Medical Instrumentation (Prentice-Hall, 1981), Chap. 3.

A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, 1989).

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach (Wiley, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Soliton intensity pulse, | x [ n ] | 2 , with FWHM = 17.6 T . (b) Using Fig. 1(a) as an input signal, an optical step function, | y I [ n ] | 2 , is generated at the output of the temporal optical integrator. (c) Using Fig. 1(a) as an input signal, a delayed optical step function, | y 2 [ n ] | 2 = | y I [ n D ] | 2 , with D = 200 , is generated at the output of the temporal optical integrator. (d) Plot of an optical square pulse which is described by | y [ n ] | 2 = | y I [ n ] | 2 | y 2 [ n ] | 2 = | y I [ n ] | 2 | y I [ n D ] | 2 , where D = 200 .

Fig. 2
Fig. 2

(a) Signal-flow graph representation of the operating principle of the optical square pulse generator in the discrete-time domain. (b) Signal-flow graph representation of the operating principle of the optical square pulse generator in the z transform domain.

Fig. 3
Fig. 3

Schematic of the proposed reconfigurable optical square pulse generator based on the active semiconductor waveguide technology consisting of the cascade of a tunable all-pole filter (or a microring resonator) and a tunable all-zero filter (or an asymmetrical Mach–Zehnder interferometer).

Fig. 4
Fig. 4

(Color online) (a) Soliton intensity pulse, | x [ n ] | 2 , with FWHM = 17.6 T 5.81   ps . (b) Using Fig. 4(a) as an input signal, an optical square pulse, | y [ n ] | 2 , with D = 200 , is generated at the output of the square pulse generator with typical ideal values of G = 1.0967 and b = 0.9981 for D = 200 . (c) Using Fig. 4(a) as an input signal, an optical square pulse, | y [ n ] | 2 , with D = 400 , is generated at the output of the square pulse generator with typical ideal values of G = 1.0967 and b = 1.0 for D = 400 . (d) Using Fig. 4(a) as an input signal, an optical square pulse, | y [ n ] | 2 , with D = 600 , is generated at the output of the square pulse generator with typical ideal values of G = 1.0967 and b = 1.0 for D = 600 .

Fig. 5
Fig. 5

(a) Two input soliton intensity pulses, | x [ n ] | 2 , with FWHM = 8.8 T 2.9   ps (solid curve) and FWHM = 17.6 T 5.8   ps (dashed curve). (b) Corresponding generated square pulses, | y [ n ] | 2 , where the solid curve corresponds to the case of FWHM = 8.8 T 2.9   ps of the input pulse [solid curve in 5(a)] and the dashed curve corresponds to the case of FWHM = 17.6 T 5.8   ps of the input pulse [dashed curve in 5(a)]. The square pulse generator has parameter values of G = 1.0967 and b = 0.9981 for D = 200 .

Fig. 6
Fig. 6

(a) Input soliton pulse with FWHM = 8.8 T 2.9   ps (solid curve) and input Gaussian pulse with pulse width of 2 σ = 10 T 3.3   ps (dashed curve). (b) Generated square pulses at the output of the square pulse generator with D = 100 when the input is a soliton pulse (solid curve) and when the input is a Gaussian pulse (dashed curve). The square pulse generator has parameter values of G = 1.0967 and b = 0.9586 for D = 100 .

Fig. 7
Fig. 7

(a) Input RZ soliton pulse train to the square pulse generator with D = 100 where the bit sequence is [110110101], the pulse width is FWHM = 8.8 T 2.9   ps , and the bit period is T b = 200 T 66   ps . (b) Generated RZ square pulse train at the output of the square pulse generator with typical ideal parameter values of G = 1.0967 and b = 0.9586 for D = 100. (c) Generated RZ square signal at the output of the square pulse generator with a deviated gain value of G * = 0.999 G = 1.0956 and the required b = 0.9544 for D = 100 . (d) Generated RZ square signal at the output of the square pulse generator with a deviated gain value of G * = 0.995 G = 1.0912 and the required b = 0.9334 for D = 100 .

Fig. 8
Fig. 8

(a) Input RZ soliton pulse train to the square pulse generator with D = 100 , where the bit sequence is [110110101], the pulse width is FWHM = 8.8 T 2.9   ps , and the bit period is T b = 100 T 33   ps . (b) Generated NRZ square pulse train at the output of the square pulse generator with typical ideal parameter values of G = 1.0967 and b = 0.9586 for D = 100 . (c) Generated NRZ square signal at the output of the square pulse generator with a deviated gain G * = 0.999 G = 1.0956 and the required b = 0.9544 for D = 100 . (d) Generated NRZ square signal at the output of the square pulse generator with a deviated gain G * = 0.995 G = 1.0912 and the required b = 0.9334 for D = 100 .

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

y ( t ) | t = m T = 0 m T x ( t ) d t .
H ideal ( ω ) = { 1 j ω T , 0 ω T / ( 2 π ) 1 / 2 , 1 j ( 2 π ω T ) , 1 / 2 < ω T / ( 2 π ) 1 ,
H I ( z ) = Y I ( z ) X ( z ) = 1 1 z 1 ,
X ( z ) = n = x [ n ] z n .
Y I ( z ) = n = y I [ n ] z n .
H I ( z ) = n = h I [ n ] z n .
y I [ n ] = x [ n ] h I [ n ] ,
x [ n ] = sech [ n / σ ] ,
y [ n ] = y I [ n ] y 2 [ n ] = y I [ n ] y I [ n D ] .
Y ( z ) = Y I ( z ) Y 2 ( z ) = Y I ( z ) z D Y I ( z ) = ( 1 z D ) Y I ( z ) .
Y ( z ) = ( 1 z D ) X ( z ) H I ( z ) = ( 1 z D ) X ( z ) 1 1 z 1 .
H ( z ) = Y ( z ) X ( z ) = 1 z D 1 z 1 ,
H a p ( z ) = [ G d 2 ] 1 / 2 1 [ G ( 1 d ) 2 exp ( 2 α L ) ] 1 / 2 z 1 ,
amplitude   cross-coupling   coefficient = b exp ( j θ ) ,
amplitude   direct-coupling   coefficient = 1 b exp ( j θ ) .
b = 1 2 ( 1 + cos φ ) ,
φ = cos 1 ( 2 b 1 ) ,
θ = tan 1 [ sin φ cos φ 1 ] ,
H a z ( z ) = 1 b × exp ( j θ ) × exp ( j ϕ ) × [ 1 + b 1 b × H d ( z ) × exp ( j ϕ ) ] ,
H d ( z ) = exp ( α D L ) × z D , D = 1 , 2 ,   …   ,
H a z ( z ) = [ 1 b ] 1 / 2 × exp [ j ( θ + π ) ] × [ 1 ( b exp ( 2 α D L ) 1 b ) 1 / 2 z D ] .
H ^ ( z ) = H a p ( z ) × H a z ( z ) = [ G d 2 ( 1 b ) ] 1 / 2 × exp ( j ( θ + π ) ) × [ 1 ( b exp ( 2 α D L ) 1 b ) 1 / 2 z D 1 [ G ( 1 d ) 2 exp ( 2 α L ) 1 / 2 z 1 ] ] .
[ G ( 1 d ) 2 exp ( 2 α L ) ] 1 / 2 = 1 ,
( b exp ( 2 α D L ) 1 b ) 1 / 2 = 1.
G = 1 ( 1 d ) 2 exp ( 2 α L ) .
b = 1 1 + exp ( 2 α D L ) .
z pole = [ G ( 1 d ) 2 exp ( 2 α L ) ] 1 / 2 = 1 ,
z zero, k = ( b exp ( 2 α D L ) 1 b ) 1 / 2 D × exp ( j 2 π k / D ) ,
k = 0 , 1 , 2 ,   …   ,   D 1.
| z zero, k | = ( b exp ( 2 α D L ) 1 b ) 1 / 2 D = ( 1 ) 1 / D = 1.
( b exp ( 2 α D L ) 1 b ) 1 / 2 D = [ G ( 1 d ) 2 exp ( 2 α L ) ] 1 / 2 = 1.
b = [ G ( 1 d ) 2 exp ( 2 α L ) ] D exp ( 2 α D L ) + [ G ( 1 d ) 2 exp ( 2 α L ) ] D .
output   pulse   width < D T ,
output   pulse < 10 × input   pulse   width ,
D T 10 × input   pulse   width .
x [ n ] = exp [ n 2 / ( 2 σ 2 ) ] ,

Metrics