Abstract

What is believed to be a novel holographic optical encoding scheme has been developed to enhance the performance of laser sensors designed for the measurement of wavelength and angular trajectory. A prototype holographic imaging diffractometer has been created to reconstruct holographic cueing patterns superimposed in the focal plane of wide-angle scene imagery. Based on experimental pattern metric measurements at the focal plane, a theoretical model is used to compute the laser source wavelength and its apparent propagation direction within the sensor's field of view. The benefits of incorporating holographic enhancements within an imager-based sensor architecture are discussed.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ruschin, "Compact device for laser spectral analysis and direction detection," in Laser-Inflicted Eye Injuries: Epidemiology, Prevention, and Treatment, B. E. Stuck and M. Belkin, eds., Proc. SPIE 2674, 184-187 (1996).
    [CrossRef]
  2. A. Cantin and J. Dubois, "New detector technology to detect and determine the angle of arrival of collimated radiation," in Opto-Contact: Workshop on Technology Transfers, Start-Up Opportunities, and Strategic Alliances, R. J. Corriveau, M. J. Soileau, and M. Auger, eds., Proc. SPIE 3414, 270-278 (1998).
    [CrossRef]
  3. A. Cantin, G. Pelletier, P. Webb, M. Cordray, D. Pomerleau, J. H. Parker, M. L. DeLong, and S. A. Milligan, "Status of the development of the miniaturized digital High Angular Resolution Laser Irradiation Detectors (HARLIDtrade) technology," in the 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulos, ed., Proc. SPIE 3491, 967-972 (1998).
  4. M. L. DeLong and B. D. Duncan, "Laser threat discrimination based on volume holographic memory," in Proceedings of the IEEE 1995 National Aerospace and Electronics Conference (NAECON, Dayton, Ohio, 1995), Vol. 2, pp. 831-838.
  5. M. L. DeLong, B. D. Duncan, and J. H. Parker, Jr., "Volume-holographic memory for laser threat discrimination," J. Opt. Soc. Am. B 13, 2198-2208 (1996).
    [CrossRef]
  6. M. L. DeLong, "Volume holographic memory for laser threat discrimination," Ph.D. dissertation (University of Dayton, 1996).
  7. M. P. Dierking and M. A. Karim, "Solid-block stationary Fourier-transform spectrometer," Appl. Opt. 35, 84-89 (1996).
    [CrossRef] [PubMed]
  8. A. Magill, "Still cameras," in Applied Optics and Optical Engineering, R.Kingslake, ed. (Academic, 1967), Vol. 4, pp. 133-134.
  9. H. Kögelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

1998

A. Cantin and J. Dubois, "New detector technology to detect and determine the angle of arrival of collimated radiation," in Opto-Contact: Workshop on Technology Transfers, Start-Up Opportunities, and Strategic Alliances, R. J. Corriveau, M. J. Soileau, and M. Auger, eds., Proc. SPIE 3414, 270-278 (1998).
[CrossRef]

A. Cantin, G. Pelletier, P. Webb, M. Cordray, D. Pomerleau, J. H. Parker, M. L. DeLong, and S. A. Milligan, "Status of the development of the miniaturized digital High Angular Resolution Laser Irradiation Detectors (HARLIDtrade) technology," in the 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulos, ed., Proc. SPIE 3491, 967-972 (1998).

1996

M. L. DeLong, B. D. Duncan, and J. H. Parker, Jr., "Volume-holographic memory for laser threat discrimination," J. Opt. Soc. Am. B 13, 2198-2208 (1996).
[CrossRef]

M. P. Dierking and M. A. Karim, "Solid-block stationary Fourier-transform spectrometer," Appl. Opt. 35, 84-89 (1996).
[CrossRef] [PubMed]

S. Ruschin, "Compact device for laser spectral analysis and direction detection," in Laser-Inflicted Eye Injuries: Epidemiology, Prevention, and Treatment, B. E. Stuck and M. Belkin, eds., Proc. SPIE 2674, 184-187 (1996).
[CrossRef]

1969

H. Kögelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Cantin, A.

A. Cantin and J. Dubois, "New detector technology to detect and determine the angle of arrival of collimated radiation," in Opto-Contact: Workshop on Technology Transfers, Start-Up Opportunities, and Strategic Alliances, R. J. Corriveau, M. J. Soileau, and M. Auger, eds., Proc. SPIE 3414, 270-278 (1998).
[CrossRef]

A. Cantin, G. Pelletier, P. Webb, M. Cordray, D. Pomerleau, J. H. Parker, M. L. DeLong, and S. A. Milligan, "Status of the development of the miniaturized digital High Angular Resolution Laser Irradiation Detectors (HARLIDtrade) technology," in the 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulos, ed., Proc. SPIE 3491, 967-972 (1998).

Cordray, M.

A. Cantin, G. Pelletier, P. Webb, M. Cordray, D. Pomerleau, J. H. Parker, M. L. DeLong, and S. A. Milligan, "Status of the development of the miniaturized digital High Angular Resolution Laser Irradiation Detectors (HARLIDtrade) technology," in the 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulos, ed., Proc. SPIE 3491, 967-972 (1998).

DeLong, M. L.

A. Cantin, G. Pelletier, P. Webb, M. Cordray, D. Pomerleau, J. H. Parker, M. L. DeLong, and S. A. Milligan, "Status of the development of the miniaturized digital High Angular Resolution Laser Irradiation Detectors (HARLIDtrade) technology," in the 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulos, ed., Proc. SPIE 3491, 967-972 (1998).

M. L. DeLong, B. D. Duncan, and J. H. Parker, Jr., "Volume-holographic memory for laser threat discrimination," J. Opt. Soc. Am. B 13, 2198-2208 (1996).
[CrossRef]

M. L. DeLong and B. D. Duncan, "Laser threat discrimination based on volume holographic memory," in Proceedings of the IEEE 1995 National Aerospace and Electronics Conference (NAECON, Dayton, Ohio, 1995), Vol. 2, pp. 831-838.

M. L. DeLong, "Volume holographic memory for laser threat discrimination," Ph.D. dissertation (University of Dayton, 1996).

Dierking, M. P.

Dubois, J.

A. Cantin and J. Dubois, "New detector technology to detect and determine the angle of arrival of collimated radiation," in Opto-Contact: Workshop on Technology Transfers, Start-Up Opportunities, and Strategic Alliances, R. J. Corriveau, M. J. Soileau, and M. Auger, eds., Proc. SPIE 3414, 270-278 (1998).
[CrossRef]

Duncan, B. D.

M. L. DeLong, B. D. Duncan, and J. H. Parker, Jr., "Volume-holographic memory for laser threat discrimination," J. Opt. Soc. Am. B 13, 2198-2208 (1996).
[CrossRef]

M. L. DeLong and B. D. Duncan, "Laser threat discrimination based on volume holographic memory," in Proceedings of the IEEE 1995 National Aerospace and Electronics Conference (NAECON, Dayton, Ohio, 1995), Vol. 2, pp. 831-838.

Karim, M. A.

Kögelnik, H.

H. Kögelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

Magill, A.

A. Magill, "Still cameras," in Applied Optics and Optical Engineering, R.Kingslake, ed. (Academic, 1967), Vol. 4, pp. 133-134.

Milligan, S. A.

A. Cantin, G. Pelletier, P. Webb, M. Cordray, D. Pomerleau, J. H. Parker, M. L. DeLong, and S. A. Milligan, "Status of the development of the miniaturized digital High Angular Resolution Laser Irradiation Detectors (HARLIDtrade) technology," in the 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulos, ed., Proc. SPIE 3491, 967-972 (1998).

Parker, J. H.

A. Cantin, G. Pelletier, P. Webb, M. Cordray, D. Pomerleau, J. H. Parker, M. L. DeLong, and S. A. Milligan, "Status of the development of the miniaturized digital High Angular Resolution Laser Irradiation Detectors (HARLIDtrade) technology," in the 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulos, ed., Proc. SPIE 3491, 967-972 (1998).

M. L. DeLong, B. D. Duncan, and J. H. Parker, Jr., "Volume-holographic memory for laser threat discrimination," J. Opt. Soc. Am. B 13, 2198-2208 (1996).
[CrossRef]

Pelletier, G.

A. Cantin, G. Pelletier, P. Webb, M. Cordray, D. Pomerleau, J. H. Parker, M. L. DeLong, and S. A. Milligan, "Status of the development of the miniaturized digital High Angular Resolution Laser Irradiation Detectors (HARLIDtrade) technology," in the 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulos, ed., Proc. SPIE 3491, 967-972 (1998).

Pomerleau, D.

A. Cantin, G. Pelletier, P. Webb, M. Cordray, D. Pomerleau, J. H. Parker, M. L. DeLong, and S. A. Milligan, "Status of the development of the miniaturized digital High Angular Resolution Laser Irradiation Detectors (HARLIDtrade) technology," in the 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulos, ed., Proc. SPIE 3491, 967-972 (1998).

Ruschin, S.

S. Ruschin, "Compact device for laser spectral analysis and direction detection," in Laser-Inflicted Eye Injuries: Epidemiology, Prevention, and Treatment, B. E. Stuck and M. Belkin, eds., Proc. SPIE 2674, 184-187 (1996).
[CrossRef]

Webb, P.

A. Cantin, G. Pelletier, P. Webb, M. Cordray, D. Pomerleau, J. H. Parker, M. L. DeLong, and S. A. Milligan, "Status of the development of the miniaturized digital High Angular Resolution Laser Irradiation Detectors (HARLIDtrade) technology," in the 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulos, ed., Proc. SPIE 3491, 967-972 (1998).

Appl. Opt.

Bell Syst. Tech. J.

H. Kögelnik, "Coupled wave theory for thick hologram gratings," Bell Syst. Tech. J. 48, 2909-2947 (1969).

J. Opt. Soc. Am. B

Proc. SPIE

S. Ruschin, "Compact device for laser spectral analysis and direction detection," in Laser-Inflicted Eye Injuries: Epidemiology, Prevention, and Treatment, B. E. Stuck and M. Belkin, eds., Proc. SPIE 2674, 184-187 (1996).
[CrossRef]

A. Cantin and J. Dubois, "New detector technology to detect and determine the angle of arrival of collimated radiation," in Opto-Contact: Workshop on Technology Transfers, Start-Up Opportunities, and Strategic Alliances, R. J. Corriveau, M. J. Soileau, and M. Auger, eds., Proc. SPIE 3414, 270-278 (1998).
[CrossRef]

Other

A. Cantin, G. Pelletier, P. Webb, M. Cordray, D. Pomerleau, J. H. Parker, M. L. DeLong, and S. A. Milligan, "Status of the development of the miniaturized digital High Angular Resolution Laser Irradiation Detectors (HARLIDtrade) technology," in the 1998 International Conference on Applications of Photonic Technology III: Closing the Gap between Theory, Development, and Applications, G. A. Lampropoulos, ed., Proc. SPIE 3491, 967-972 (1998).

M. L. DeLong and B. D. Duncan, "Laser threat discrimination based on volume holographic memory," in Proceedings of the IEEE 1995 National Aerospace and Electronics Conference (NAECON, Dayton, Ohio, 1995), Vol. 2, pp. 831-838.

M. L. DeLong, "Volume holographic memory for laser threat discrimination," Ph.D. dissertation (University of Dayton, 1996).

A. Magill, "Still cameras," in Applied Optics and Optical Engineering, R.Kingslake, ed. (Academic, 1967), Vol. 4, pp. 133-134.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Holographic imaging diffractometer consists of a wide-angle fisheye lens, a holographic optical element (HOE), and a CMOS camera.

Fig. 2
Fig. 2

Photograph of our holographic imaging diffractometer.

Fig. 3
Fig. 3

Image from our holographic imaging diffractometer, recorded with on-axis 514.5   nm laser illumination. This image shows the distorted scene “bubble” and the HOE patterns reconstructed by the incident beam.

Fig. 4
Fig. 4

HOE recording geometry. Dashed lens L 2 indicates the effective position of the camera lens for playback.

Fig. 5
Fig. 5

Reconstruction geometry of the holographic imaging diffractometer (after the fish-eye lens). The angle of the reconstruction beam is θ , and the angle of the diffracted beam is θ d .

Fig. 6
Fig. 6

Subelement reconstruction for a HOE with an offset chosen to avoid vignetting by the lens L 2 entrance pupil.

Fig. 7
Fig. 7

Illustration of the object mask geometry consisting of three circular apertures.

Fig. 8
Fig. 8

Photograph of our HOE. The 3 × 3 subelement arrays in each quadrant increase the range of field angles for which no pattern vignetting is observed at the FPA.

Tables (3)

Tables Icon

Table 1 Holographic Imaging Diffractometer System Parameters

Tables Icon

Table 2 Selected Pattern Data Obtained Using Three Different Laser Source Configurations a

Tables Icon

Table 3 Actual and Theoretical Source Parameter Results for Three Different Laser Source Configurations

Equations (231)

Equations on this page are rendered with MathJax. Learn more.

± 70 °
½ in.
1280 × 1024
6.0   μm
f / 2.27
6.37   mm
± 26 °
2.65   mm
6 7   μm
3000   lines / mm
514.5   nm
L fh
11   mm
L fh
L fh
θ
θ = c 1 θ + c 3 θ 3 ,
c 1
c 3
c 1
c 3
0.0523 rad 2
H = f D d ( 1 + d D ) f D d for d D ,
6   μm
2.803   mm
d / D
L 2
L 2
d ep
10.2   mm
L 2
f 2
6.37   mm
L 1
f 1
95.3   mm
L o
91.9   mm
( L o < f 1 )
L 1
L 2
L 1
θ r
19.7 °
514.5   nm
L 2
H d ep
H 2 d ep
L 2
L 2
L 2
L 2
L 2
d ep H
H 2 d ep
L 2
θ
λ
θ d
θ d
sin θ d = sin θ + λ λ sin θ r .
θ
L 1
L 1
1 f 1 = 1 L o + 1 ( H L ) ,
L 1
L 2
L o
L o = ( H L ) f 1 f 1 + H L ,
L 1
M = ( H L ) L o = f 1 + H L f 1 .
82.2   mm
+ 31.4
k o
k o = 2 π λ [ α ox x + α oy y + α oz z ] ,
α ox
α oy
α oz
x o
y o
α ox
α oy
α ox = M x o [ ( H d e p ) 2 + M 2 ( x o 2 + y o 2 ) ] 1 / 2 ,
α oy = M y o [ ( H d e p ) 2 + M 2 ( x o 2 + y o 2 ) ] 1 / 2 ,
k o
k r
k r = 2 π λ [ α rx x + α ry y + α rz z ] ,
α rx
α ry
α rz
α rx
α ry
sin θ r
k o
k r
K = k o k r
K = 2 π λ [ ( α ox α rx ) x + ( α oy α ry ) y + ( α oz α rz ) z ] .
7   μm
β
+ β
K T
+ β
K T
K T
K T
K T = ( cos β sin β sin β cos β ) K T .
m K T = k d k p ,
k d
k p
k d
k p
k d = 2 π λ [ α dx x + α dy y ] ,
k p = 2 π λ [ α px x + α py y ] ,
λ
1
k d
k d = k p K T .
L 2
r offset
L 2
d ep
f d / #
f d / # H d ep M l ob ,
l ob
l ob
6 mm
d ep / ( f d / # ) = 0.65   mm
2.8   mm
θ
λ
θ d
θ r
r offset
r offset = d ep tan θ r
d ep
10.2   mm
θ r
r offset
3.65   mm
r offset
3.5   mm
r offset
θ r
r offset
β
+ β
+ r offset
β
h = 1   mm
r offset
3.5   mm
3 × 3
1.0   mm
± 70 °
1.0   mm
1.16   mm
K T
k d
A x = b
k p
α px
α py
λ / λ
[ 1 0 α x1 0 1 α y1 1 0 α xj 0 1 α yj 1 0 α xu 0 1 α yu ] [ α px α py λ / λ ] = [ α dx1 α dy1 α dxj α dyj α dxu α dyu ] ,
λ
x fj
y fj
α dxj
α dyj
( α dxj α dyj ) = [ f 2 2 + ( x fj 2 + y fj 2 ) ] 1 / 2 ( x fj y fj ) .
α xj
α yj
K Tj
( α xj α yj ) = ( ( α oxj α rx ) cos β α oyj sin β ( α oxj α rx ) sin β + α oyj cos β ) ,
α oxj
α oyj
x fj
y fj
h fj
v fj
( x fj y fj ) = d ( ( h fj h fo ) v fj v fo ) ,
h fo
v fo
h fo
v fo
632.8   nm
h fj
v fj
( 1 , 1 )
sin θ = ( α px 2 + α py 2 ) 1 / 2 ,
tan ϕ = α py α px ,
θ
ϕ
θ
ϕ
+ x
ϕ
θ
tan A = tan θ cos ( ϕ + 180 ° ) ,
sin E = sin θ sin ( ϕ + 180 ° ) .
514.5   nm
x oj
y oj
h fj
v fj
H f × V f
L fh
c 1
c 3
L 2
d ep
L 2
f 2
L 2
f 1
L 1
L o
L 1
θ r
L 1
L 2
L 1
r offset
h fo
v fo
514.5   nm
L 2
θ
θ d
L 2
3 × 3

Metrics