Abstract

A new type of diffusion pattern is proposed. The proposed patterns are composed of 2D diffusion dots. The diffusion dots are created on a photoresist plate by recording the image of a local area of a piece of ground glass dot by dot. An imaging lens covered by a mask with a slit aperture is used to form the image. By changing the orientation of the slit aperture on the mask plane, the diffusion dots can have different microintensity distributions for the same incident light beam. Therefore the diffusion dots created by the same slit aperture orientation show the same brightness, and the diffusion dots created by different slit orientations show different brightness for the same illuminating and viewing conditions. Thus a proposed diffusion pattern can show dynamic images by changing its illuminating or viewing directions. By applying the double-exposure technique to the diffusion dots of a pattern, the pattern not only can show dynamic effects but also can possess several hidden features for identifying the pattern. Therefore the proposed patterns are dynamic and anticounterfeiting.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. K. Lee, J. W. J. Wu, S. L. Yeh, C. W. Tu, Y. A. Han, E. H. Z. Liao, Y. Y. Chang, I. E. Tsai, H. H. Lin, J. C. T. Hsieh, and J. T. W. Lee, "Optical configuration and color representation range of a variable pitch dot matrix holographic printer," Appl. Opt. 39, 40-53 (2000).
    [CrossRef]
  2. S. L. Yeh and S. T. Lin, "Dot-matrix hologram with hidden image," Opt. Eng. 41, 314-318 (2002).
    [CrossRef]
  3. S. L. Yeh, "Using random features of dot-matrix holograms for anticounterfeiting," Appl. Opt. 45, 3698-3703 (2006).
    [CrossRef] [PubMed]
  4. S. L. Yeh, "Identifying a dot-matrix hologram by the deviations of the fringe positions of its grating dots," Opt. Eng. 45, 075803 (2006).
    [CrossRef]
  5. S. L. Yeh, "Light-diffusion mark constituted with two-dimensional speckle patterns for enhancing hologram anticounterfeiting characteristics," Opt. Eng. 43, 573-579 (2004).
    [CrossRef]
  6. S. L. Yeh, "Light-diffusion patterns created by contact-copy interference and their applications for surface-relief holograms," Opt. Eng. 44, 125804 (2005).
    [CrossRef]
  7. C. M. Vest, Holographic Interferometry (Wiley, 1979).
  8. http://www.rodenstock.com.
  9. http://www.townetech.com/holoplat.htm.
  10. http://www.microchem.com/products/rhem.htm.
  11. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1983).
  12. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

2006 (2)

S. L. Yeh, "Identifying a dot-matrix hologram by the deviations of the fringe positions of its grating dots," Opt. Eng. 45, 075803 (2006).
[CrossRef]

S. L. Yeh, "Using random features of dot-matrix holograms for anticounterfeiting," Appl. Opt. 45, 3698-3703 (2006).
[CrossRef] [PubMed]

2005 (1)

S. L. Yeh, "Light-diffusion patterns created by contact-copy interference and their applications for surface-relief holograms," Opt. Eng. 44, 125804 (2005).
[CrossRef]

2004 (1)

S. L. Yeh, "Light-diffusion mark constituted with two-dimensional speckle patterns for enhancing hologram anticounterfeiting characteristics," Opt. Eng. 43, 573-579 (2004).
[CrossRef]

2002 (1)

S. L. Yeh and S. T. Lin, "Dot-matrix hologram with hidden image," Opt. Eng. 41, 314-318 (2002).
[CrossRef]

2000 (1)

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1983).

Chang, Y. Y.

Collier, R. J.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1983).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Han, Y. A.

Hsieh, J. C. T.

Lee, C. K.

Lee, J. T. W.

Liao, E. H. Z.

Lin, H. H.

Lin, L. H.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1983).

Lin, S. T.

S. L. Yeh and S. T. Lin, "Dot-matrix hologram with hidden image," Opt. Eng. 41, 314-318 (2002).
[CrossRef]

Tsai, I. E.

Tu, C. W.

Vest, C. M.

C. M. Vest, Holographic Interferometry (Wiley, 1979).

Wu, J. W. J.

Yeh, S. L.

S. L. Yeh, "Using random features of dot-matrix holograms for anticounterfeiting," Appl. Opt. 45, 3698-3703 (2006).
[CrossRef] [PubMed]

S. L. Yeh, "Identifying a dot-matrix hologram by the deviations of the fringe positions of its grating dots," Opt. Eng. 45, 075803 (2006).
[CrossRef]

S. L. Yeh, "Light-diffusion patterns created by contact-copy interference and their applications for surface-relief holograms," Opt. Eng. 44, 125804 (2005).
[CrossRef]

S. L. Yeh, "Light-diffusion mark constituted with two-dimensional speckle patterns for enhancing hologram anticounterfeiting characteristics," Opt. Eng. 43, 573-579 (2004).
[CrossRef]

S. L. Yeh and S. T. Lin, "Dot-matrix hologram with hidden image," Opt. Eng. 41, 314-318 (2002).
[CrossRef]

C. K. Lee, J. W. J. Wu, S. L. Yeh, C. W. Tu, Y. A. Han, E. H. Z. Liao, Y. Y. Chang, I. E. Tsai, H. H. Lin, J. C. T. Hsieh, and J. T. W. Lee, "Optical configuration and color representation range of a variable pitch dot matrix holographic printer," Appl. Opt. 39, 40-53 (2000).
[CrossRef]

Appl. Opt. (2)

Opt. Eng. (4)

S. L. Yeh and S. T. Lin, "Dot-matrix hologram with hidden image," Opt. Eng. 41, 314-318 (2002).
[CrossRef]

S. L. Yeh, "Identifying a dot-matrix hologram by the deviations of the fringe positions of its grating dots," Opt. Eng. 45, 075803 (2006).
[CrossRef]

S. L. Yeh, "Light-diffusion mark constituted with two-dimensional speckle patterns for enhancing hologram anticounterfeiting characteristics," Opt. Eng. 43, 573-579 (2004).
[CrossRef]

S. L. Yeh, "Light-diffusion patterns created by contact-copy interference and their applications for surface-relief holograms," Opt. Eng. 44, 125804 (2005).
[CrossRef]

Other (6)

C. M. Vest, Holographic Interferometry (Wiley, 1979).

http://www.rodenstock.com.

http://www.townetech.com/holoplat.htm.

http://www.microchem.com/products/rhem.htm.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1983).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Setup to create a pattern with 2D diffusion dots.

Fig. 2
Fig. 2

Light scattered by a diffusion dot created by the setup in Fig. 1.

Fig. 3
Fig. 3

Slit aperture orientation arrangement for a fractal pattern.

Fig. 4
Fig. 4

(Color online) Different appearance of a single-exposed diffusion pattern.

Fig. 5
Fig. 5

(Color online) Speckles of the single-exposed pattern inspected by an optical microscope.

Fig. 6
Fig. 6

(Color online) Double-exposed pattern created on a photoresist plate.

Fig. 7
Fig. 7

Designed local areas with δ =0   μm and δ =10   μm for the double-exposed pattern in Fig. 6.

Fig. 8
Fig. 8

(Color online) Hazy image “E” on the double-exposed diffusion pattern in Fig. 6.

Fig. 9
Fig. 9

(Color online) Speckles of the double-exposed pattern inspected by an optical microscope.

Fig. 10
Fig. 10

(Color online) Intensity spectra for different corresponding position pairs on the patterns in Figs. 5 and 6.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

U 3 ( x 3 , y 3 ) = h ( x 3 , y 3 ) U g ( x 3 , y 3 ) ,
h ( x 3 , y 3 ) = P ( x 2 , y 2 ) × exp [ j 2 π ( x 3 x ˜ + y 3 y ˜ ) ] d x ˜ d y ˜ ,
U g ( x 3 , y 3 ) = 1 M U 1 ( x 3 M , y 3 M ) ,
I 3 ( x 3 , y 3 ) = | U 3 ( x 3 , y 3 ) | 2 .
t ( x 3 , y 3 ) = exp { j [ c 1 + c 2 I 3 ( x 3 , y 3 ) ] } ,
U ˜ t ( u , v ; ξ , η ) = c 3 F { exp [ j c 2 I 3 ( x 3 , y 3 ) ] } u u ξ , v v η = U ˜ t ( u ξ , v η ; 0 , 0 ) ,
U ˜ t ( u , v ; ξ , η ) = c 3 δ ( u ξ , v η ) + c 4 { [ H ˜ ( u ξ , v η ) × U ˜ g ( u ξ , v η ) ] [ H ˜ ( u ξ , v η ) × U ˜ g ( u ξ , v η ) ] } ,

Metrics