Abstract

The diffraction transmission characteristics of submicrometer gratings (SMGs) designed for coupling tricolor light out of a light guide plate (LGP) are discussed. Three discrete SMGs are designed for three special wavelengths: red (700  nm), green (546.1  nm), and blue (435.8  nm). The propagation direction of the output tricolor light is perpendicular to the surface of the LGP and can pass through the corresponding pixels of liquid crystal. Calculated by the rigorous coupled-wave theory, the first-order transmission efficiency as a function of grating depth is found to be approximate to a sinusoidlike curve and can be utilized to obtain uniform illumination. The theoretical maximum transmission is as much as 44%. The performance of the LGP composed of SMGs is also demonstrated by our experiments. Compared with other types of LGP, the present device has the advantage of flexible control of illumination angle and wavelengths. Additionally, lossy and costly color filters are unnecessary in the proposed configuration.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Käläntär, S. Matsumoto, and T. Onishi, "Functional light-guide plate characterized by optical microdeflector and micro-reflector for LCD backlight," IEICE Trans. Electron. E84-C, 1637-1646 (2001).
  2. T. Okumura, A. Tagaya, Y. Koike, M. Horiguchi, and H. Suzuki, "Highly-efficient backlight for liquid crystal display having no optical films," Appl. Phys. Lett. 83, 2515-2517 (2003).
    [CrossRef]
  3. D. Feng, G. F. Jin, Y. B. Yan, and S. S. Fan, "High quality light guide plates that can control the illumination angle based on microprism structures," Appl. Phys. Lett. 85, 6016-6018 (2004).
    [CrossRef]
  4. G. L. Chen, C. Leu, and T. C. Yu, "Light guide plate with diffraction gratings and backlight module using the same," U.S. patent 7,085,056 (1 August 2006).
  5. H. P. D. Shieh, Y. P. Huang, and K. W. Chien, "Micro-optics for liquid crystal displays application," J. Disp. Technol. 1, 62-76 (2005).
    [CrossRef]
  6. X. P. Yang, Y. B. Yan, and G. F. Jin, "Polarized light-guide plate for liquid crystal display," Opt. Express 13, 8349-8356 (2005).
    [CrossRef] [PubMed]
  7. D. R. Selyiah and K. Wang, "Modeling of a color-separating backlight with internal mirrors," SID Int. Symp. Digest Tech. Papers 35, 487-489 (2004).
    [CrossRef]
  8. S. Ochiai, "Light guide plates and light guide plate assembly utilizing diffraction grating," U.S. patent 5,703,667 (30 December 1997).
  9. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficiency implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995).
    [CrossRef]

2005 (2)

H. P. D. Shieh, Y. P. Huang, and K. W. Chien, "Micro-optics for liquid crystal displays application," J. Disp. Technol. 1, 62-76 (2005).
[CrossRef]

X. P. Yang, Y. B. Yan, and G. F. Jin, "Polarized light-guide plate for liquid crystal display," Opt. Express 13, 8349-8356 (2005).
[CrossRef] [PubMed]

2004 (2)

D. R. Selyiah and K. Wang, "Modeling of a color-separating backlight with internal mirrors," SID Int. Symp. Digest Tech. Papers 35, 487-489 (2004).
[CrossRef]

D. Feng, G. F. Jin, Y. B. Yan, and S. S. Fan, "High quality light guide plates that can control the illumination angle based on microprism structures," Appl. Phys. Lett. 85, 6016-6018 (2004).
[CrossRef]

2003 (1)

T. Okumura, A. Tagaya, Y. Koike, M. Horiguchi, and H. Suzuki, "Highly-efficient backlight for liquid crystal display having no optical films," Appl. Phys. Lett. 83, 2515-2517 (2003).
[CrossRef]

2001 (1)

K. Käläntär, S. Matsumoto, and T. Onishi, "Functional light-guide plate characterized by optical microdeflector and micro-reflector for LCD backlight," IEICE Trans. Electron. E84-C, 1637-1646 (2001).

1995 (1)

Chen, G. L.

G. L. Chen, C. Leu, and T. C. Yu, "Light guide plate with diffraction gratings and backlight module using the same," U.S. patent 7,085,056 (1 August 2006).

Chien, K. W.

H. P. D. Shieh, Y. P. Huang, and K. W. Chien, "Micro-optics for liquid crystal displays application," J. Disp. Technol. 1, 62-76 (2005).
[CrossRef]

Fan, S. S.

D. Feng, G. F. Jin, Y. B. Yan, and S. S. Fan, "High quality light guide plates that can control the illumination angle based on microprism structures," Appl. Phys. Lett. 85, 6016-6018 (2004).
[CrossRef]

Feng, D.

D. Feng, G. F. Jin, Y. B. Yan, and S. S. Fan, "High quality light guide plates that can control the illumination angle based on microprism structures," Appl. Phys. Lett. 85, 6016-6018 (2004).
[CrossRef]

Gaylord, T. K.

Grann, E. B.

Horiguchi, M.

T. Okumura, A. Tagaya, Y. Koike, M. Horiguchi, and H. Suzuki, "Highly-efficient backlight for liquid crystal display having no optical films," Appl. Phys. Lett. 83, 2515-2517 (2003).
[CrossRef]

Huang, Y. P.

H. P. D. Shieh, Y. P. Huang, and K. W. Chien, "Micro-optics for liquid crystal displays application," J. Disp. Technol. 1, 62-76 (2005).
[CrossRef]

Jin, G. F.

X. P. Yang, Y. B. Yan, and G. F. Jin, "Polarized light-guide plate for liquid crystal display," Opt. Express 13, 8349-8356 (2005).
[CrossRef] [PubMed]

D. Feng, G. F. Jin, Y. B. Yan, and S. S. Fan, "High quality light guide plates that can control the illumination angle based on microprism structures," Appl. Phys. Lett. 85, 6016-6018 (2004).
[CrossRef]

Käläntär, K.

K. Käläntär, S. Matsumoto, and T. Onishi, "Functional light-guide plate characterized by optical microdeflector and micro-reflector for LCD backlight," IEICE Trans. Electron. E84-C, 1637-1646 (2001).

Koike, Y.

T. Okumura, A. Tagaya, Y. Koike, M. Horiguchi, and H. Suzuki, "Highly-efficient backlight for liquid crystal display having no optical films," Appl. Phys. Lett. 83, 2515-2517 (2003).
[CrossRef]

Leu, C.

G. L. Chen, C. Leu, and T. C. Yu, "Light guide plate with diffraction gratings and backlight module using the same," U.S. patent 7,085,056 (1 August 2006).

Matsumoto, S.

K. Käläntär, S. Matsumoto, and T. Onishi, "Functional light-guide plate characterized by optical microdeflector and micro-reflector for LCD backlight," IEICE Trans. Electron. E84-C, 1637-1646 (2001).

Moharam, M. G.

Ochiai, S.

S. Ochiai, "Light guide plates and light guide plate assembly utilizing diffraction grating," U.S. patent 5,703,667 (30 December 1997).

Okumura, T.

T. Okumura, A. Tagaya, Y. Koike, M. Horiguchi, and H. Suzuki, "Highly-efficient backlight for liquid crystal display having no optical films," Appl. Phys. Lett. 83, 2515-2517 (2003).
[CrossRef]

Onishi, T.

K. Käläntär, S. Matsumoto, and T. Onishi, "Functional light-guide plate characterized by optical microdeflector and micro-reflector for LCD backlight," IEICE Trans. Electron. E84-C, 1637-1646 (2001).

Pommet, D. A.

Selyiah, D. R.

D. R. Selyiah and K. Wang, "Modeling of a color-separating backlight with internal mirrors," SID Int. Symp. Digest Tech. Papers 35, 487-489 (2004).
[CrossRef]

Shieh, H. P. D.

H. P. D. Shieh, Y. P. Huang, and K. W. Chien, "Micro-optics for liquid crystal displays application," J. Disp. Technol. 1, 62-76 (2005).
[CrossRef]

Suzuki, H.

T. Okumura, A. Tagaya, Y. Koike, M. Horiguchi, and H. Suzuki, "Highly-efficient backlight for liquid crystal display having no optical films," Appl. Phys. Lett. 83, 2515-2517 (2003).
[CrossRef]

Tagaya, A.

T. Okumura, A. Tagaya, Y. Koike, M. Horiguchi, and H. Suzuki, "Highly-efficient backlight for liquid crystal display having no optical films," Appl. Phys. Lett. 83, 2515-2517 (2003).
[CrossRef]

Wang, K.

D. R. Selyiah and K. Wang, "Modeling of a color-separating backlight with internal mirrors," SID Int. Symp. Digest Tech. Papers 35, 487-489 (2004).
[CrossRef]

Yan, Y. B.

X. P. Yang, Y. B. Yan, and G. F. Jin, "Polarized light-guide plate for liquid crystal display," Opt. Express 13, 8349-8356 (2005).
[CrossRef] [PubMed]

D. Feng, G. F. Jin, Y. B. Yan, and S. S. Fan, "High quality light guide plates that can control the illumination angle based on microprism structures," Appl. Phys. Lett. 85, 6016-6018 (2004).
[CrossRef]

Yang, X. P.

Yu, T. C.

G. L. Chen, C. Leu, and T. C. Yu, "Light guide plate with diffraction gratings and backlight module using the same," U.S. patent 7,085,056 (1 August 2006).

Appl. Phys. Lett. (2)

T. Okumura, A. Tagaya, Y. Koike, M. Horiguchi, and H. Suzuki, "Highly-efficient backlight for liquid crystal display having no optical films," Appl. Phys. Lett. 83, 2515-2517 (2003).
[CrossRef]

D. Feng, G. F. Jin, Y. B. Yan, and S. S. Fan, "High quality light guide plates that can control the illumination angle based on microprism structures," Appl. Phys. Lett. 85, 6016-6018 (2004).
[CrossRef]

IEICE Trans. Electron. (1)

K. Käläntär, S. Matsumoto, and T. Onishi, "Functional light-guide plate characterized by optical microdeflector and micro-reflector for LCD backlight," IEICE Trans. Electron. E84-C, 1637-1646 (2001).

J. Disp. Technol. (1)

H. P. D. Shieh, Y. P. Huang, and K. W. Chien, "Micro-optics for liquid crystal displays application," J. Disp. Technol. 1, 62-76 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Express (1)

SID Int. Symp. Digest Tech. Papers (1)

D. R. Selyiah and K. Wang, "Modeling of a color-separating backlight with internal mirrors," SID Int. Symp. Digest Tech. Papers 35, 487-489 (2004).
[CrossRef]

Other (2)

S. Ochiai, "Light guide plates and light guide plate assembly utilizing diffraction grating," U.S. patent 5,703,667 (30 December 1997).

G. L. Chen, C. Leu, and T. C. Yu, "Light guide plate with diffraction gratings and backlight module using the same," U.S. patent 7,085,056 (1 August 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the groove structure of the grating. TE-polarized light is incident through the substrate.

Fig. 2
Fig. 2

(Color online) Influence of the grating depths on the first-order transmission efficiency. The diffraction efficiencies are calculated by using RCWT. The periods of gratings T R , T G , and T B are chosen to be 0.651, 0.508, and 0.405   μm , respectively, as described in Eq. (1). The incident angle is fixed at 45°.

Fig. 3
Fig. 3

(Color online) Diffraction efficiencies for the first positive transmission diffraction orders plotted as a function of grating depths (h) and incident angle (θ). Here grating period T and incident wavelength λ are chosen as 0. 405470   μm and 435 .8   nm , respectively.

Fig. 4
Fig. 4

(Color online) The working principle of our proposed light guide based on SMGs. Incident light is coupled out through a set of SMGs, which are composed of three different periods of gratings designed for red, green, and blue, respectively. For one wavelength, the grating depths for each LCD pixel are varied from left to right to get uniform illumination.

Fig. 5
Fig. 5

Scanning electron micrograph of the cross sections of the experimentally obtained grating grooves with different depths. The gratings depths are 0.08, 0.12, 0.14, 0.20, and 0 .23   μm from the bottom to the top.

Fig. 6
Fig. 6

(Color online) Light guide effect with SMGs. The incident wavelength is 441 .6   nm (He–Cd laser, 50   mW ) and the incident angle is 45°. The grating depth and period are 0.08 and 0 .4124   μm , respectively.

Fig. 7
Fig. 7

(Color online) Relationship between the transmission efficiency and the grating depth. The inset shows the experimental setup to measure the diffraction efficiency η.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k 0 n 1 sin θ = k out + m K , m = 0 , ± 1 ,   ± 2 ,   …   ,

Metrics