Abstract

Surface-plasmon resonance (SPR) is a sensing technique widely used for its label-free feature. However, its sensitivity is contingent on the divergence angle of the excitation beam. The problem becomes pronounced for compact systems when a low-cost LED is used as the light source. When the Kretschmann configuration with a periodically modulated surface is used, a bandgap appears in the surface plasmon dispersion relation. We recognize that the high density of modes on the edge of the surface-plasmon bandgap permits the coupling of a wider range of incidence angles of excitation photons to surface-plasmon polaritons than what is possible in the traditional Kretschmann configuration. Here, the numerical simulation illustrates that the sensitivity, detection limit, and reflectivity minimum of an amplitude-based SPR bandgap-assisted surface-plasmon sensor are almost independent of the divergence angle. Two different bandgap structures are compared with the Kretschmann configuration using the rigorous coupled-wave analysis technique. The results indicate that the bandgap-assisted sensing outperforms traditional SPR sensing when the angular standard deviation of the excitation beam is above 1°.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. J. Homola, "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem. 377, 528-539 (2003).
    [CrossRef] [PubMed]
  3. J. Melendez, R. Carr, D. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212-216 (1996).
    [CrossRef]
  4. E. Kretschmann, "Determination of optical constants of metals by excitation of surface plasmons," Z. Phys. 241, 313-324 (1971).
    [CrossRef]
  5. G. Nenninger, M. Piliarik, and J. Homola, "Data analysis for optical sensors based on spectroscopy of surface plasmons," Meas. Sci. Technol. 13, 2038-2046 (2002).
    [CrossRef]
  6. J. Homola, "On the sensitivity of surface plasmon resonance sensors with spectral interrogation," Sens. Actuators B 41, 207-211 (1997).
    [CrossRef]
  7. S. Wu, H. Ho, W. Law, C. Lin, and S. Kong, "Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration," Opt. Lett. 29, 2378-2380 (2004).
    [CrossRef] [PubMed]
  8. A. Kolomenskii, P. Gershon, and H. Schuessler, "Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance," Appl. Opt. 36, 6539-6547 (1997).
    [CrossRef]
  9. J. Homola, S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]
  10. J. Villatoro and A. Garcia-Valenzuela, "Sensitivity of optical sensors based on laser-excited surface-plasmon waves," Appl. Opt. 38, 4837-4844 (1999).
    [CrossRef]
  11. F. Pincemin and J. Greffet, "Propagation and localization of a surface plasmon polariton on a finite grating," J. Opt. Soc. Am. B 13, 1499-1509 (1996).
    [CrossRef]
  12. B. Fischer, T. Fischer, and W. Knoll, "Dispersion of surface-plasmons in rectangular, sinusoidal, and incoherent silver gratings," J. Appl. Phys. 75, 1577-1581 (1994).
    [CrossRef]
  13. J. Yoon, G. Lee, S. Song, C. Oh, and P. Kim, "Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface," J. Appl. Phys. 94, 123-129 (2003).
    [CrossRef]
  14. W. Barnes, T. Preist, S. Kitson, and J. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
    [CrossRef]
  15. K. Ho, C. Chan, and C. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
    [CrossRef] [PubMed]
  16. M. Gonzalez, J. Weeber, A. Baudrion, A. Dereux, A. Stepanov, J. Krenn, E. Devaux, and T. Ebbesen, "Design, near-field characterization, and modeling of 45° circle surface-plasmon Bragg mirrors," Phys. Rev. B 73, 155416 (2006).
    [CrossRef]
  17. J. Sanchez-Gil and A. Maradudin, "Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: efficient mirrors," Appl. Phys. Lett. 86, (2005).
    [CrossRef]
  18. S. Kitson, W. Barnes, and J. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
    [CrossRef] [PubMed]
  19. E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  20. M. Moharam, D. Pommet, E. Grann, and T. Gaylord, "Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings--enhanced transmittance matrix approach," J. Opt. Soc. Am. A 12, 1077-1086 (1995).
    [CrossRef]
  21. M. Moharam, E. Grann, D. Pommet, and T. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995).
    [CrossRef]
  22. P. Lalanne and G. Morris, "Highly improved convergence of the coupled-wave method for TM polarization," J. Opt. Soc. Am. A 13, 779-784 (1996).
    [CrossRef]
  23. J. Chandezon, D. Maystre, and G. Raoult, "A new theoretical method for diffraction gratings and its numerical application," J. Opt. 11, 235-241 (1980).
    [CrossRef]
  24. L. Li, J. Chandezon, G. Granet, and J. Plumey, "Rigorous and efficient grating-analysis method made easy for optical engineers," Appl. Opt. 38, 304-313 (1999).
    [CrossRef]

2006

M. Gonzalez, J. Weeber, A. Baudrion, A. Dereux, A. Stepanov, J. Krenn, E. Devaux, and T. Ebbesen, "Design, near-field characterization, and modeling of 45° circle surface-plasmon Bragg mirrors," Phys. Rev. B 73, 155416 (2006).
[CrossRef]

2005

J. Sanchez-Gil and A. Maradudin, "Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: efficient mirrors," Appl. Phys. Lett. 86, (2005).
[CrossRef]

2004

2003

J. Yoon, G. Lee, S. Song, C. Oh, and P. Kim, "Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface," J. Appl. Phys. 94, 123-129 (2003).
[CrossRef]

J. Homola, "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

2002

G. Nenninger, M. Piliarik, and J. Homola, "Data analysis for optical sensors based on spectroscopy of surface plasmons," Meas. Sci. Technol. 13, 2038-2046 (2002).
[CrossRef]

1999

1997

1996

W. Barnes, T. Preist, S. Kitson, and J. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

S. Kitson, W. Barnes, and J. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
[CrossRef] [PubMed]

J. Melendez, R. Carr, D. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

F. Pincemin and J. Greffet, "Propagation and localization of a surface plasmon polariton on a finite grating," J. Opt. Soc. Am. B 13, 1499-1509 (1996).
[CrossRef]

P. Lalanne and G. Morris, "Highly improved convergence of the coupled-wave method for TM polarization," J. Opt. Soc. Am. A 13, 779-784 (1996).
[CrossRef]

1995

1994

B. Fischer, T. Fischer, and W. Knoll, "Dispersion of surface-plasmons in rectangular, sinusoidal, and incoherent silver gratings," J. Appl. Phys. 75, 1577-1581 (1994).
[CrossRef]

1990

K. Ho, C. Chan, and C. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

1980

J. Chandezon, D. Maystre, and G. Raoult, "A new theoretical method for diffraction gratings and its numerical application," J. Opt. 11, 235-241 (1980).
[CrossRef]

1971

E. Kretschmann, "Determination of optical constants of metals by excitation of surface plasmons," Z. Phys. 241, 313-324 (1971).
[CrossRef]

Barnes, W.

W. Barnes, T. Preist, S. Kitson, and J. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

S. Kitson, W. Barnes, and J. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
[CrossRef] [PubMed]

Bartholomew, D.

J. Melendez, R. Carr, D. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Baudrion, A.

M. Gonzalez, J. Weeber, A. Baudrion, A. Dereux, A. Stepanov, J. Krenn, E. Devaux, and T. Ebbesen, "Design, near-field characterization, and modeling of 45° circle surface-plasmon Bragg mirrors," Phys. Rev. B 73, 155416 (2006).
[CrossRef]

Carr, R.

J. Melendez, R. Carr, D. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Chan, C.

K. Ho, C. Chan, and C. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

Chandezon, J.

L. Li, J. Chandezon, G. Granet, and J. Plumey, "Rigorous and efficient grating-analysis method made easy for optical engineers," Appl. Opt. 38, 304-313 (1999).
[CrossRef]

J. Chandezon, D. Maystre, and G. Raoult, "A new theoretical method for diffraction gratings and its numerical application," J. Opt. 11, 235-241 (1980).
[CrossRef]

Dereux, A.

M. Gonzalez, J. Weeber, A. Baudrion, A. Dereux, A. Stepanov, J. Krenn, E. Devaux, and T. Ebbesen, "Design, near-field characterization, and modeling of 45° circle surface-plasmon Bragg mirrors," Phys. Rev. B 73, 155416 (2006).
[CrossRef]

Devaux, E.

M. Gonzalez, J. Weeber, A. Baudrion, A. Dereux, A. Stepanov, J. Krenn, E. Devaux, and T. Ebbesen, "Design, near-field characterization, and modeling of 45° circle surface-plasmon Bragg mirrors," Phys. Rev. B 73, 155416 (2006).
[CrossRef]

Ebbesen, T.

M. Gonzalez, J. Weeber, A. Baudrion, A. Dereux, A. Stepanov, J. Krenn, E. Devaux, and T. Ebbesen, "Design, near-field characterization, and modeling of 45° circle surface-plasmon Bragg mirrors," Phys. Rev. B 73, 155416 (2006).
[CrossRef]

Elkind, J.

J. Melendez, R. Carr, D. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Fischer, B.

B. Fischer, T. Fischer, and W. Knoll, "Dispersion of surface-plasmons in rectangular, sinusoidal, and incoherent silver gratings," J. Appl. Phys. 75, 1577-1581 (1994).
[CrossRef]

Fischer, T.

B. Fischer, T. Fischer, and W. Knoll, "Dispersion of surface-plasmons in rectangular, sinusoidal, and incoherent silver gratings," J. Appl. Phys. 75, 1577-1581 (1994).
[CrossRef]

Furlong, C.

J. Melendez, R. Carr, D. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Garcia-Valenzuela, A.

Gauglitz, G.

J. Homola, S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Gaylord, T.

Gershon, P.

Gonzalez, M.

M. Gonzalez, J. Weeber, A. Baudrion, A. Dereux, A. Stepanov, J. Krenn, E. Devaux, and T. Ebbesen, "Design, near-field characterization, and modeling of 45° circle surface-plasmon Bragg mirrors," Phys. Rev. B 73, 155416 (2006).
[CrossRef]

Granet, G.

Grann, E.

Greffet, J.

Ho, H.

Ho, K.

K. Ho, C. Chan, and C. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

Homola, J.

J. Homola, "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

G. Nenninger, M. Piliarik, and J. Homola, "Data analysis for optical sensors based on spectroscopy of surface plasmons," Meas. Sci. Technol. 13, 2038-2046 (2002).
[CrossRef]

J. Homola, S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

J. Homola, "On the sensitivity of surface plasmon resonance sensors with spectral interrogation," Sens. Actuators B 41, 207-211 (1997).
[CrossRef]

Kim, P.

J. Yoon, G. Lee, S. Song, C. Oh, and P. Kim, "Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface," J. Appl. Phys. 94, 123-129 (2003).
[CrossRef]

Kitson, S.

W. Barnes, T. Preist, S. Kitson, and J. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

S. Kitson, W. Barnes, and J. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
[CrossRef] [PubMed]

Knoll, W.

B. Fischer, T. Fischer, and W. Knoll, "Dispersion of surface-plasmons in rectangular, sinusoidal, and incoherent silver gratings," J. Appl. Phys. 75, 1577-1581 (1994).
[CrossRef]

Kolomenskii, A.

Kong, S.

Krenn, J.

M. Gonzalez, J. Weeber, A. Baudrion, A. Dereux, A. Stepanov, J. Krenn, E. Devaux, and T. Ebbesen, "Design, near-field characterization, and modeling of 45° circle surface-plasmon Bragg mirrors," Phys. Rev. B 73, 155416 (2006).
[CrossRef]

Kretschmann, E.

E. Kretschmann, "Determination of optical constants of metals by excitation of surface plasmons," Z. Phys. 241, 313-324 (1971).
[CrossRef]

Kukanskis, K.

J. Melendez, R. Carr, D. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Lalanne, P.

Law, W.

Lee, G.

J. Yoon, G. Lee, S. Song, C. Oh, and P. Kim, "Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface," J. Appl. Phys. 94, 123-129 (2003).
[CrossRef]

Li, L.

Lin, C.

Maradudin, A.

J. Sanchez-Gil and A. Maradudin, "Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: efficient mirrors," Appl. Phys. Lett. 86, (2005).
[CrossRef]

Maystre, D.

J. Chandezon, D. Maystre, and G. Raoult, "A new theoretical method for diffraction gratings and its numerical application," J. Opt. 11, 235-241 (1980).
[CrossRef]

Melendez, J.

J. Melendez, R. Carr, D. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Moharam, M.

Morris, G.

Nenninger, G.

G. Nenninger, M. Piliarik, and J. Homola, "Data analysis for optical sensors based on spectroscopy of surface plasmons," Meas. Sci. Technol. 13, 2038-2046 (2002).
[CrossRef]

Oh, C.

J. Yoon, G. Lee, S. Song, C. Oh, and P. Kim, "Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface," J. Appl. Phys. 94, 123-129 (2003).
[CrossRef]

Palik, E.

E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Piliarik, M.

G. Nenninger, M. Piliarik, and J. Homola, "Data analysis for optical sensors based on spectroscopy of surface plasmons," Meas. Sci. Technol. 13, 2038-2046 (2002).
[CrossRef]

Pincemin, F.

Plumey, J.

Pommet, D.

Preist, T.

W. Barnes, T. Preist, S. Kitson, and J. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Raoult, G.

J. Chandezon, D. Maystre, and G. Raoult, "A new theoretical method for diffraction gratings and its numerical application," J. Opt. 11, 235-241 (1980).
[CrossRef]

Sambles, J.

S. Kitson, W. Barnes, and J. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
[CrossRef] [PubMed]

W. Barnes, T. Preist, S. Kitson, and J. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

Sanchez-Gil, J.

J. Sanchez-Gil and A. Maradudin, "Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: efficient mirrors," Appl. Phys. Lett. 86, (2005).
[CrossRef]

Schuessler, H.

Song, S.

J. Yoon, G. Lee, S. Song, C. Oh, and P. Kim, "Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface," J. Appl. Phys. 94, 123-129 (2003).
[CrossRef]

Soukoulis, C.

K. Ho, C. Chan, and C. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

Stepanov, A.

M. Gonzalez, J. Weeber, A. Baudrion, A. Dereux, A. Stepanov, J. Krenn, E. Devaux, and T. Ebbesen, "Design, near-field characterization, and modeling of 45° circle surface-plasmon Bragg mirrors," Phys. Rev. B 73, 155416 (2006).
[CrossRef]

Villatoro, J.

Weeber, J.

M. Gonzalez, J. Weeber, A. Baudrion, A. Dereux, A. Stepanov, J. Krenn, E. Devaux, and T. Ebbesen, "Design, near-field characterization, and modeling of 45° circle surface-plasmon Bragg mirrors," Phys. Rev. B 73, 155416 (2006).
[CrossRef]

Woodbury, R.

J. Melendez, R. Carr, D. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Wu, S.

Yee, S.

J. Homola, S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

J. Melendez, R. Carr, D. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Yoon, J.

J. Yoon, G. Lee, S. Song, C. Oh, and P. Kim, "Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface," J. Appl. Phys. 94, 123-129 (2003).
[CrossRef]

Anal. Bioanal. Chem.

J. Homola, "Present and future of surface plasmon resonance biosensors," Anal. Bioanal. Chem. 377, 528-539 (2003).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

J. Sanchez-Gil and A. Maradudin, "Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: efficient mirrors," Appl. Phys. Lett. 86, (2005).
[CrossRef]

J. Appl. Phys.

B. Fischer, T. Fischer, and W. Knoll, "Dispersion of surface-plasmons in rectangular, sinusoidal, and incoherent silver gratings," J. Appl. Phys. 75, 1577-1581 (1994).
[CrossRef]

J. Yoon, G. Lee, S. Song, C. Oh, and P. Kim, "Surface-plasmon photonic band gaps in dielectric gratings on a flat metal surface," J. Appl. Phys. 94, 123-129 (2003).
[CrossRef]

J. Opt.

J. Chandezon, D. Maystre, and G. Raoult, "A new theoretical method for diffraction gratings and its numerical application," J. Opt. 11, 235-241 (1980).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Meas. Sci. Technol.

G. Nenninger, M. Piliarik, and J. Homola, "Data analysis for optical sensors based on spectroscopy of surface plasmons," Meas. Sci. Technol. 13, 2038-2046 (2002).
[CrossRef]

Opt. Lett.

Phys. Rev. B

W. Barnes, T. Preist, S. Kitson, and J. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227-6244 (1996).
[CrossRef]

M. Gonzalez, J. Weeber, A. Baudrion, A. Dereux, A. Stepanov, J. Krenn, E. Devaux, and T. Ebbesen, "Design, near-field characterization, and modeling of 45° circle surface-plasmon Bragg mirrors," Phys. Rev. B 73, 155416 (2006).
[CrossRef]

Phys. Rev. Lett.

K. Ho, C. Chan, and C. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef] [PubMed]

S. Kitson, W. Barnes, and J. Sambles, "Full photonic band gap for surface modes in the visible," Phys. Rev. Lett. 77, 2670-2673 (1996).
[CrossRef] [PubMed]

Sens. Actuators B

J. Homola, S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

J. Homola, "On the sensitivity of surface plasmon resonance sensors with spectral interrogation," Sens. Actuators B 41, 207-211 (1997).
[CrossRef]

J. Melendez, R. Carr, D. Bartholomew, K. Kukanskis, J. Elkind, S. Yee, C. Furlong, and R. Woodbury, "A commercial solution for surface plasmon sensing," Sens. Actuators B 35, 212-216 (1996).
[CrossRef]

Z. Phys.

E. Kretschmann, "Determination of optical constants of metals by excitation of surface plasmons," Z. Phys. 241, 313-324 (1971).
[CrossRef]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Reflectivity on each structure for a Gaussian beam of divergence 0° and 2° at 633 nm and with a central angle of incidence of 51°.

Fig. 2
Fig. 2

Schematic of the different structures studied.

Fig. 3
Fig. 3

Illustration of the concept of the sensor. On the band edge, a wider range of excitation angles can be coupled to SPWs because the density of modes is higher.

Fig. 4
Fig. 4

Reflectivity maps for each of the structures. The left column corresponds to n 3 = 1 and the right n 3 = 1.2 . On all the figures, the arrow represents the position where the signal was monitored in the further sensing results. The black curves in (b) and (c) correspond to k x = k g / 2 . The white dashed curve in (b1) corresponds to k ˜ SP (see text). The white dashed curve in (c1) corresponds to the SP excitation on the glass–metal interface.

Fig. 5
Fig. 5

Plots of the sensitivity, the detection limit, and the reflectivity minimum versus the angular deviation of the excitation beam for each structure.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

k SP = k 0 ϵ 2 ϵ 3 ϵ 2 + ϵ 3 .
ρ ( ω ) = d k SP d ω .
k g 2 = ( k ˜ SP ) .
k g 2 = ( k SP ) = 2 π λ 0 ( ϵ 2 ϵ 3 ϵ 2 + ϵ 3 ) 1.0378 2 π λ 0 .
R Gauss ( λ ,   θ i ) = 1 2 π σ + R ( λ ,   θ ) exp [ ( θ θ i ) 2 2 σ 2 ] d θ .
S BG = d R d n 3 = R θ θ BG n 3 + R λ λ BG n 3 ,
n 1 2 π λ BG sin θ BG = π λ g .
S BG = d R d n 3 = R λ λ BG n 3 = R λ λ BG θ BG θ BG n 3 = 2 n 1 λ g cos θ BG R λ θ BG n 3 ,
S S P R = R θ θ S P R n 3 ,
S BG S S P R = n 1 cos θ BG 2 λ g R / λ R / θ .
δ n 3 , min R R / n 3 .

Metrics