Abstract

The National Ignition Facility (NIF) is the world's largest laser system. It contains a 192 beam neodymium glass laser that is designed to deliver 1.8  MJ at 500  TW at 351  nm in order to achieve energy gain (ignition) in a deuterium–tritium nuclear fusion target. To meet this goal, laser design criteria include the ability to generate pulses of up to 1.8  MJ total energy, with peak power of 500 TW and temporal pulse shapes spanning 2 orders of magnitude at the third harmonic (351  nm or 3ω) of the laser wavelength. The focal-spot fluence distribution of these pulses is carefully controlled, through a combination of special optics in the 1ω(1053  nm) portion of the laser (continuous phase plates), smoothing by spectral dispersion, and the overlapping of multiple beams with orthogonal polarization (polarization smoothing). We report performance qualification tests of the first eight beams of the NIF laser. Measurements are reported at both 1ω and 3ω, both with and without focal-spot conditioning. When scaled to full 192 beam operation, these results demonstrate, to the best of our knowledge for the first time, that the NIF will meet its laser performance design criteria, and that the NIF can simultaneously meet the temporal pulse shaping, focal-spot conditioning, and peak power requirements for two candidate indirect drive ignition designs.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. H. Miller, E. I. Moses, and C. R. Wuest, "The National Ignition Facility," Opt. Eng. 43, 2841-2853 (2004).
    [CrossRef]
  2. M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004).
    [CrossRef]
  3. R. E. Bonanno, "Assembling and installing line-replaceable units for the National Ignition Facility," Opt. Eng. 43, 2866-2872 (2004).
    [CrossRef]
  4. R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, "Alignment and wavefront control systems of the National Ignition Facility," Opt. Eng. 43, 2873-2884 (2004).
    [CrossRef]
  5. M. Shaw, W. Williams, R. House, and C. Haynam, "Laser performance operations model," Opt. Eng. 43, 2885-2895 (2004).
    [CrossRef]
  6. E. I. Moses and C. R. Wuest, "The National Ignition Facility: laser performance and first experiments," Fusion Sci. Technol. 47, 314-322 (2005).
  7. J. T. Hunt, K. R. Manes, J. R. Murray, P. A. Renard, R. Sawicki, J. B. Trenholme, and W. Williams, "Laser design basis for the National Ignition Facility," Fusion Technol. 26, 767-771 (1994).
  8. P. J. Wisoff, M. W. Bowers, G. V. Erbert, D. F. Browning, and D. R. Jedlovec, "NIF injection laser system," Proc. SPIE 5341, 146-155 (2004).
    [CrossRef]
  9. J. K. Crane, R. B. Wilcox, N. W. Hopps, D. Browning, M. D. Martinez, B. Moran, F. Penko, J. E. Rothenberg, M. Henesian, C. B. Dane, and L. A. Hackel, "Integrated operations of the National Ignition Facility (NIF) optical pulse generation development system," Proc. SPIE 3492, 100-111 (1999).
    [CrossRef]
  10. M. D. Martinez, K. M. Skulina, F. J. Deadrick, J. K Crane, B. Moran, J. Braucht, B. Jones, S. Hawkins, R. Tilley, J. Crawford, D. Browning, and F. Penko, "Performance results of the high gain, Nd:glass, engineering prototype preamplifier module (PAM) for the National Ignition Facility (NIF)," Proc. SPIE 3611, 169-180 (1999).
    [CrossRef]
  11. B. M. Van Wonterghem, J. R. Murray, J. H. Campbell, D. R. Speck, C. E. Barker, I. C. Smith, D. F. Browning, and W. C. Behrendt, "Performance of a prototype for a large-aperture multipass Nd:glass laser for inertial confinement fusion," Appl. Opt. 36, 4932-4953 (1997).
    [CrossRef] [PubMed]
  12. J. D. Lindl, Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive (Springer, 1998).
  13. J. D. Lindl, "Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain," Phys. Plasmas 2, 3933-4024 (1995).
    [CrossRef]
  14. J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, "The physics basis for ignition using indirect-drive targets on the National Ignition Facility," Phys. Plasmas 11, 339-491 (2004).
    [CrossRef]
  15. D. E. Hinkel, S. W. Haan, A. B. Langdon, T. R. Dittrich, C. H. Still, and M. M. Marinak, "National Ignition Facility targets driven at high radiation temperature: ignition, hydrodynamic stability, and laser-plasma interactions," Phys. Plasmas 11, 1128-1144 (2004).
    [CrossRef]
  16. S. W. Haan, M. C. Herrmann, P. A. Amendt, D. A Callahan, T. R. Dittrich, M. J. Edwards, O. S. Jones, M. M. Marinak, D. H. Munro, S. M. Pollaine, J. D. Salmonson, B. K. Spears, and L. J. Suter, "Update on specifications for NIF ignition targets, and their roll up into an error budget," Fusion Sci. Technol. 49, 553-557 (2006).
  17. K. R. Manes and W. W. Simmons, "Statistical optics applied to high-power glass lasers," J. Opt. Soc. Am. A 2, 528-538 (1984).
    [CrossRef]
  18. J. R. Murray, J. R. Smith, R. B. Ehrlich, D. T. Kyrazis, C. W. Thompson, and R. B. Wilcox, "Observation and suppression of transverse stimulated Brillouin scattering in large optics," J. Opt. Soc. Am. B 6, 2402-2411 (1989).
    [CrossRef]
  19. R. Craxton, "High-efficiency tripling schemes for high-power Nd-glass lasers," IEEE J. Quantum Electron. 17, 1771-1782 (1989).
    [CrossRef]
  20. D. Eimerl, J. M. Auerbach, and P. W. Milonni, "Paraxial wave theory of second and third harmonic generation in uniaxial crystals: I. Narrowband pump fields," J. Mod. Opt. 42, 1037-1067 (1995).
    [CrossRef]
  21. W. H. Williams, J. M. Auerbach, M. A. Henesian, K. S. Jancaitis, K. R. Manes, N. C. Mehta, C. D. Orth, R. A. Sacks, M. J. Shaw, and C. C. Widmayer, "Optical propagation modeling for the National Ignition Facility," Proc. SPIE 5341, 277-278.
  22. J. M. Auerbach, P. J. Wegner, S. A. Couture, D. Eimerl, R. L. Hibbard, D. Milam, M. A. Norton, P. K. Whitman, and L. A. Hackel, "Modeling of frequency doubling and tripling with measured crystal spatial refractive-index nonuniformities," Appl. Opt. 40, 1404-1411 (2001).
    [CrossRef]
  23. R. H. Hardin and F. D. Tappert, "Application of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations," SIAM Rev. 15, 423 (1973).
  24. P. M. Cooley and J. W. Tukey, "An algorithm for the machine computation of complex Fourier series," Math. Comput. 19, 291-301 (1965).
  25. D. H. Munro, S. N. Dixit, A. B. Langdon, and J. R. Murray, "Polarization smoothing in a convergent beam," Appl. Opt. 43, 6639-6647 (2004).
    [CrossRef]
  26. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, "Improved laser beam uniformity using the angular dispersion of frequency-modulated light," J. Appl. Phys. 66, 3456-3462 (1989).
    [CrossRef]
  27. J. E. Rothenberg, "Comparison of beam-smoothing methods for direct-drive inertial confinement fusion," J. Opt. Soc. Am. B 14, 1664-1671 (1997).
    [CrossRef]
  28. J. Goodman, in Laser Speckle and Related Phenomena, J.C.Dainty, ed. (Springer-Verlag, 1984), Chap. 2.
  29. H. T. Powell, S. N. Dixit, and M. A. Henesian, Beam Smoothing Capability on the Nova Laser, LLNL Rep. UCRL-LR-105821-91-1, (Lawrence Livermore National Laboratory, 1990), pp. 28-38.
  30. S. N. Dixit, I. M. Thomas, B. W. Woods, A. J. Morgan, M. A. Henesian, P. J. Wegner, and H. T. Powell, "Random phase plates for beam smoothing on the Nova laser," Appl. Opt. 32, 2543-2554 (1993).
    [CrossRef] [PubMed]
  31. S. N. Dixit, I. M. Thomas, M. R. Rushford, R. Merrill, M. D. Perry, H. T. Powell and K. A. Nugent, "Kinoform phase plates for tailoring focal plane intensity profiles," LLNL Rep. UCRL-LR-105821-94-4, (Lawrence Livermore National Laboratory, 1994), pp. 152-159.
  32. S. N. Dixit, M. D. Feit, M. D. Perry, and H. T. Powell, "Designing fully continuous phase plates for tailoring focal plane irradiance profiles," Opt. Lett. 21, 1715-1717 (1996).
    [CrossRef] [PubMed]
  33. J. A. Menapace, S. N. Dixit, F. Y. Génin, and W. F. Brocious, "Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces," Proc. SPIE 5273, 220-230 (2003).
    [CrossRef]
  34. M. Shaw, W. Williams, K. Jancaitis, C. Widmayer, and R. House, "Performance and operational modeling of the National Ignition Facility," at the International Symposium on Optical Science and Technology (2003).
  35. C. A. Haynam, R. A. Sacks, and M. J. Shaw, "Computational modeling in support of the National Ignition Facility operations," presented at the 8th International Conference on Accelerator and Large Experimental Physics and Controls Systems (ICALEPS, 2001).

2006 (1)

S. W. Haan, M. C. Herrmann, P. A. Amendt, D. A Callahan, T. R. Dittrich, M. J. Edwards, O. S. Jones, M. M. Marinak, D. H. Munro, S. M. Pollaine, J. D. Salmonson, B. K. Spears, and L. J. Suter, "Update on specifications for NIF ignition targets, and their roll up into an error budget," Fusion Sci. Technol. 49, 553-557 (2006).

2005 (1)

E. I. Moses and C. R. Wuest, "The National Ignition Facility: laser performance and first experiments," Fusion Sci. Technol. 47, 314-322 (2005).

2004 (9)

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, "The physics basis for ignition using indirect-drive targets on the National Ignition Facility," Phys. Plasmas 11, 339-491 (2004).
[CrossRef]

D. E. Hinkel, S. W. Haan, A. B. Langdon, T. R. Dittrich, C. H. Still, and M. M. Marinak, "National Ignition Facility targets driven at high radiation temperature: ignition, hydrodynamic stability, and laser-plasma interactions," Phys. Plasmas 11, 1128-1144 (2004).
[CrossRef]

G. H. Miller, E. I. Moses, and C. R. Wuest, "The National Ignition Facility," Opt. Eng. 43, 2841-2853 (2004).
[CrossRef]

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004).
[CrossRef]

R. E. Bonanno, "Assembling and installing line-replaceable units for the National Ignition Facility," Opt. Eng. 43, 2866-2872 (2004).
[CrossRef]

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, "Alignment and wavefront control systems of the National Ignition Facility," Opt. Eng. 43, 2873-2884 (2004).
[CrossRef]

M. Shaw, W. Williams, R. House, and C. Haynam, "Laser performance operations model," Opt. Eng. 43, 2885-2895 (2004).
[CrossRef]

P. J. Wisoff, M. W. Bowers, G. V. Erbert, D. F. Browning, and D. R. Jedlovec, "NIF injection laser system," Proc. SPIE 5341, 146-155 (2004).
[CrossRef]

D. H. Munro, S. N. Dixit, A. B. Langdon, and J. R. Murray, "Polarization smoothing in a convergent beam," Appl. Opt. 43, 6639-6647 (2004).
[CrossRef]

2003 (1)

J. A. Menapace, S. N. Dixit, F. Y. Génin, and W. F. Brocious, "Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces," Proc. SPIE 5273, 220-230 (2003).
[CrossRef]

2001 (1)

1999 (2)

J. K. Crane, R. B. Wilcox, N. W. Hopps, D. Browning, M. D. Martinez, B. Moran, F. Penko, J. E. Rothenberg, M. Henesian, C. B. Dane, and L. A. Hackel, "Integrated operations of the National Ignition Facility (NIF) optical pulse generation development system," Proc. SPIE 3492, 100-111 (1999).
[CrossRef]

M. D. Martinez, K. M. Skulina, F. J. Deadrick, J. K Crane, B. Moran, J. Braucht, B. Jones, S. Hawkins, R. Tilley, J. Crawford, D. Browning, and F. Penko, "Performance results of the high gain, Nd:glass, engineering prototype preamplifier module (PAM) for the National Ignition Facility (NIF)," Proc. SPIE 3611, 169-180 (1999).
[CrossRef]

1997 (2)

1996 (1)

1995 (2)

J. D. Lindl, "Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain," Phys. Plasmas 2, 3933-4024 (1995).
[CrossRef]

D. Eimerl, J. M. Auerbach, and P. W. Milonni, "Paraxial wave theory of second and third harmonic generation in uniaxial crystals: I. Narrowband pump fields," J. Mod. Opt. 42, 1037-1067 (1995).
[CrossRef]

1994 (1)

J. T. Hunt, K. R. Manes, J. R. Murray, P. A. Renard, R. Sawicki, J. B. Trenholme, and W. Williams, "Laser design basis for the National Ignition Facility," Fusion Technol. 26, 767-771 (1994).

1993 (1)

1989 (3)

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, "Improved laser beam uniformity using the angular dispersion of frequency-modulated light," J. Appl. Phys. 66, 3456-3462 (1989).
[CrossRef]

J. R. Murray, J. R. Smith, R. B. Ehrlich, D. T. Kyrazis, C. W. Thompson, and R. B. Wilcox, "Observation and suppression of transverse stimulated Brillouin scattering in large optics," J. Opt. Soc. Am. B 6, 2402-2411 (1989).
[CrossRef]

R. Craxton, "High-efficiency tripling schemes for high-power Nd-glass lasers," IEEE J. Quantum Electron. 17, 1771-1782 (1989).
[CrossRef]

1984 (1)

1973 (1)

R. H. Hardin and F. D. Tappert, "Application of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations," SIAM Rev. 15, 423 (1973).

1965 (1)

P. M. Cooley and J. W. Tukey, "An algorithm for the machine computation of complex Fourier series," Math. Comput. 19, 291-301 (1965).

Amendt, P.

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, "The physics basis for ignition using indirect-drive targets on the National Ignition Facility," Phys. Plasmas 11, 339-491 (2004).
[CrossRef]

Amendt, P. A.

S. W. Haan, M. C. Herrmann, P. A. Amendt, D. A Callahan, T. R. Dittrich, M. J. Edwards, O. S. Jones, M. M. Marinak, D. H. Munro, S. M. Pollaine, J. D. Salmonson, B. K. Spears, and L. J. Suter, "Update on specifications for NIF ignition targets, and their roll up into an error budget," Fusion Sci. Technol. 49, 553-557 (2006).

Arnold, T. J.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, "Alignment and wavefront control systems of the National Ignition Facility," Opt. Eng. 43, 2873-2884 (2004).
[CrossRef]

Auerbach, J. M.

J. M. Auerbach, P. J. Wegner, S. A. Couture, D. Eimerl, R. L. Hibbard, D. Milam, M. A. Norton, P. K. Whitman, and L. A. Hackel, "Modeling of frequency doubling and tripling with measured crystal spatial refractive-index nonuniformities," Appl. Opt. 40, 1404-1411 (2001).
[CrossRef]

D. Eimerl, J. M. Auerbach, and P. W. Milonni, "Paraxial wave theory of second and third harmonic generation in uniaxial crystals: I. Narrowband pump fields," J. Mod. Opt. 42, 1037-1067 (1995).
[CrossRef]

W. H. Williams, J. M. Auerbach, M. A. Henesian, K. S. Jancaitis, K. R. Manes, N. C. Mehta, C. D. Orth, R. A. Sacks, M. J. Shaw, and C. C. Widmayer, "Optical propagation modeling for the National Ignition Facility," Proc. SPIE 5341, 277-278.

Barker, C. E.

Beer, N. R.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, "Alignment and wavefront control systems of the National Ignition Facility," Opt. Eng. 43, 2873-2884 (2004).
[CrossRef]

Behrendt, W. C.

Berger, R. L.

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, "The physics basis for ignition using indirect-drive targets on the National Ignition Facility," Phys. Plasmas 11, 339-491 (2004).
[CrossRef]

Bliss, E. S.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, "Alignment and wavefront control systems of the National Ignition Facility," Opt. Eng. 43, 2873-2884 (2004).
[CrossRef]

Bonanno, R. E.

R. E. Bonanno, "Assembling and installing line-replaceable units for the National Ignition Facility," Opt. Eng. 43, 2866-2872 (2004).
[CrossRef]

Bowers, M. W.

P. J. Wisoff, M. W. Bowers, G. V. Erbert, D. F. Browning, and D. R. Jedlovec, "NIF injection laser system," Proc. SPIE 5341, 146-155 (2004).
[CrossRef]

Braucht, J.

M. D. Martinez, K. M. Skulina, F. J. Deadrick, J. K Crane, B. Moran, J. Braucht, B. Jones, S. Hawkins, R. Tilley, J. Crawford, D. Browning, and F. Penko, "Performance results of the high gain, Nd:glass, engineering prototype preamplifier module (PAM) for the National Ignition Facility (NIF)," Proc. SPIE 3611, 169-180 (1999).
[CrossRef]

Brocious, W. F.

J. A. Menapace, S. N. Dixit, F. Y. Génin, and W. F. Brocious, "Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces," Proc. SPIE 5273, 220-230 (2003).
[CrossRef]

Browning, D.

M. D. Martinez, K. M. Skulina, F. J. Deadrick, J. K Crane, B. Moran, J. Braucht, B. Jones, S. Hawkins, R. Tilley, J. Crawford, D. Browning, and F. Penko, "Performance results of the high gain, Nd:glass, engineering prototype preamplifier module (PAM) for the National Ignition Facility (NIF)," Proc. SPIE 3611, 169-180 (1999).
[CrossRef]

J. K. Crane, R. B. Wilcox, N. W. Hopps, D. Browning, M. D. Martinez, B. Moran, F. Penko, J. E. Rothenberg, M. Henesian, C. B. Dane, and L. A. Hackel, "Integrated operations of the National Ignition Facility (NIF) optical pulse generation development system," Proc. SPIE 3492, 100-111 (1999).
[CrossRef]

Browning, D. F.

Burkhart, S. C.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, "Alignment and wavefront control systems of the National Ignition Facility," Opt. Eng. 43, 2873-2884 (2004).
[CrossRef]

Callahan, D. A

S. W. Haan, M. C. Herrmann, P. A. Amendt, D. A Callahan, T. R. Dittrich, M. J. Edwards, O. S. Jones, M. M. Marinak, D. H. Munro, S. M. Pollaine, J. D. Salmonson, B. K. Spears, and L. J. Suter, "Update on specifications for NIF ignition targets, and their roll up into an error budget," Fusion Sci. Technol. 49, 553-557 (2006).

Campbell, J. H.

Cohen, S. J.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, "Alignment and wavefront control systems of the National Ignition Facility," Opt. Eng. 43, 2873-2884 (2004).
[CrossRef]

Cooley, P. M.

P. M. Cooley and J. W. Tukey, "An algorithm for the machine computation of complex Fourier series," Math. Comput. 19, 291-301 (1965).

Couture, S. A.

Crane, J. K

M. D. Martinez, K. M. Skulina, F. J. Deadrick, J. K Crane, B. Moran, J. Braucht, B. Jones, S. Hawkins, R. Tilley, J. Crawford, D. Browning, and F. Penko, "Performance results of the high gain, Nd:glass, engineering prototype preamplifier module (PAM) for the National Ignition Facility (NIF)," Proc. SPIE 3611, 169-180 (1999).
[CrossRef]

Crane, J. K.

J. K. Crane, R. B. Wilcox, N. W. Hopps, D. Browning, M. D. Martinez, B. Moran, F. Penko, J. E. Rothenberg, M. Henesian, C. B. Dane, and L. A. Hackel, "Integrated operations of the National Ignition Facility (NIF) optical pulse generation development system," Proc. SPIE 3492, 100-111 (1999).
[CrossRef]

Crawford, J.

M. D. Martinez, K. M. Skulina, F. J. Deadrick, J. K Crane, B. Moran, J. Braucht, B. Jones, S. Hawkins, R. Tilley, J. Crawford, D. Browning, and F. Penko, "Performance results of the high gain, Nd:glass, engineering prototype preamplifier module (PAM) for the National Ignition Facility (NIF)," Proc. SPIE 3611, 169-180 (1999).
[CrossRef]

Craxton, R.

R. Craxton, "High-efficiency tripling schemes for high-power Nd-glass lasers," IEEE J. Quantum Electron. 17, 1771-1782 (1989).
[CrossRef]

Craxton, R. S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, "Improved laser beam uniformity using the angular dispersion of frequency-modulated light," J. Appl. Phys. 66, 3456-3462 (1989).
[CrossRef]

Dane, C. B.

J. K. Crane, R. B. Wilcox, N. W. Hopps, D. Browning, M. D. Martinez, B. Moran, F. Penko, J. E. Rothenberg, M. Henesian, C. B. Dane, and L. A. Hackel, "Integrated operations of the National Ignition Facility (NIF) optical pulse generation development system," Proc. SPIE 3492, 100-111 (1999).
[CrossRef]

Deadrick, F. J.

M. D. Martinez, K. M. Skulina, F. J. Deadrick, J. K Crane, B. Moran, J. Braucht, B. Jones, S. Hawkins, R. Tilley, J. Crawford, D. Browning, and F. Penko, "Performance results of the high gain, Nd:glass, engineering prototype preamplifier module (PAM) for the National Ignition Facility (NIF)," Proc. SPIE 3611, 169-180 (1999).
[CrossRef]

Dittrich, T. R.

S. W. Haan, M. C. Herrmann, P. A. Amendt, D. A Callahan, T. R. Dittrich, M. J. Edwards, O. S. Jones, M. M. Marinak, D. H. Munro, S. M. Pollaine, J. D. Salmonson, B. K. Spears, and L. J. Suter, "Update on specifications for NIF ignition targets, and their roll up into an error budget," Fusion Sci. Technol. 49, 553-557 (2006).

D. E. Hinkel, S. W. Haan, A. B. Langdon, T. R. Dittrich, C. H. Still, and M. M. Marinak, "National Ignition Facility targets driven at high radiation temperature: ignition, hydrodynamic stability, and laser-plasma interactions," Phys. Plasmas 11, 1128-1144 (2004).
[CrossRef]

Dixit, S. N.

D. H. Munro, S. N. Dixit, A. B. Langdon, and J. R. Murray, "Polarization smoothing in a convergent beam," Appl. Opt. 43, 6639-6647 (2004).
[CrossRef]

J. A. Menapace, S. N. Dixit, F. Y. Génin, and W. F. Brocious, "Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces," Proc. SPIE 5273, 220-230 (2003).
[CrossRef]

S. N. Dixit, M. D. Feit, M. D. Perry, and H. T. Powell, "Designing fully continuous phase plates for tailoring focal plane irradiance profiles," Opt. Lett. 21, 1715-1717 (1996).
[CrossRef] [PubMed]

S. N. Dixit, I. M. Thomas, B. W. Woods, A. J. Morgan, M. A. Henesian, P. J. Wegner, and H. T. Powell, "Random phase plates for beam smoothing on the Nova laser," Appl. Opt. 32, 2543-2554 (1993).
[CrossRef] [PubMed]

S. N. Dixit, I. M. Thomas, M. R. Rushford, R. Merrill, M. D. Perry, H. T. Powell and K. A. Nugent, "Kinoform phase plates for tailoring focal plane intensity profiles," LLNL Rep. UCRL-LR-105821-94-4, (Lawrence Livermore National Laboratory, 1994), pp. 152-159.

H. T. Powell, S. N. Dixit, and M. A. Henesian, Beam Smoothing Capability on the Nova Laser, LLNL Rep. UCRL-LR-105821-91-1, (Lawrence Livermore National Laboratory, 1990), pp. 28-38.

Edwards, M. J.

S. W. Haan, M. C. Herrmann, P. A. Amendt, D. A Callahan, T. R. Dittrich, M. J. Edwards, O. S. Jones, M. M. Marinak, D. H. Munro, S. M. Pollaine, J. D. Salmonson, B. K. Spears, and L. J. Suter, "Update on specifications for NIF ignition targets, and their roll up into an error budget," Fusion Sci. Technol. 49, 553-557 (2006).

Ehrlich, R. B.

Eimerl, D.

Erbert, G. V.

P. J. Wisoff, M. W. Bowers, G. V. Erbert, D. F. Browning, and D. R. Jedlovec, "NIF injection laser system," Proc. SPIE 5341, 146-155 (2004).
[CrossRef]

Feit, M. D.

Génin, F. Y.

J. A. Menapace, S. N. Dixit, F. Y. Génin, and W. F. Brocious, "Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces," Proc. SPIE 5273, 220-230 (2003).
[CrossRef]

Glendenning, S. G.

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, "The physics basis for ignition using indirect-drive targets on the National Ignition Facility," Phys. Plasmas 11, 339-491 (2004).
[CrossRef]

Glenzer, S. H.

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, "The physics basis for ignition using indirect-drive targets on the National Ignition Facility," Phys. Plasmas 11, 339-491 (2004).
[CrossRef]

Goodman, J.

J. Goodman, in Laser Speckle and Related Phenomena, J.C.Dainty, ed. (Springer-Verlag, 1984), Chap. 2.

Haan, S. W.

S. W. Haan, M. C. Herrmann, P. A. Amendt, D. A Callahan, T. R. Dittrich, M. J. Edwards, O. S. Jones, M. M. Marinak, D. H. Munro, S. M. Pollaine, J. D. Salmonson, B. K. Spears, and L. J. Suter, "Update on specifications for NIF ignition targets, and their roll up into an error budget," Fusion Sci. Technol. 49, 553-557 (2006).

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, "The physics basis for ignition using indirect-drive targets on the National Ignition Facility," Phys. Plasmas 11, 339-491 (2004).
[CrossRef]

D. E. Hinkel, S. W. Haan, A. B. Langdon, T. R. Dittrich, C. H. Still, and M. M. Marinak, "National Ignition Facility targets driven at high radiation temperature: ignition, hydrodynamic stability, and laser-plasma interactions," Phys. Plasmas 11, 1128-1144 (2004).
[CrossRef]

Hackel, L. A.

J. M. Auerbach, P. J. Wegner, S. A. Couture, D. Eimerl, R. L. Hibbard, D. Milam, M. A. Norton, P. K. Whitman, and L. A. Hackel, "Modeling of frequency doubling and tripling with measured crystal spatial refractive-index nonuniformities," Appl. Opt. 40, 1404-1411 (2001).
[CrossRef]

J. K. Crane, R. B. Wilcox, N. W. Hopps, D. Browning, M. D. Martinez, B. Moran, F. Penko, J. E. Rothenberg, M. Henesian, C. B. Dane, and L. A. Hackel, "Integrated operations of the National Ignition Facility (NIF) optical pulse generation development system," Proc. SPIE 3492, 100-111 (1999).
[CrossRef]

Hardin, R. H.

R. H. Hardin and F. D. Tappert, "Application of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations," SIAM Rev. 15, 423 (1973).

Hawkins, S.

M. D. Martinez, K. M. Skulina, F. J. Deadrick, J. K Crane, B. Moran, J. Braucht, B. Jones, S. Hawkins, R. Tilley, J. Crawford, D. Browning, and F. Penko, "Performance results of the high gain, Nd:glass, engineering prototype preamplifier module (PAM) for the National Ignition Facility (NIF)," Proc. SPIE 3611, 169-180 (1999).
[CrossRef]

Haynam, C.

M. Shaw, W. Williams, R. House, and C. Haynam, "Laser performance operations model," Opt. Eng. 43, 2885-2895 (2004).
[CrossRef]

Haynam, C. A.

C. A. Haynam, R. A. Sacks, and M. J. Shaw, "Computational modeling in support of the National Ignition Facility operations," presented at the 8th International Conference on Accelerator and Large Experimental Physics and Controls Systems (ICALEPS, 2001).

Henesian, M.

J. K. Crane, R. B. Wilcox, N. W. Hopps, D. Browning, M. D. Martinez, B. Moran, F. Penko, J. E. Rothenberg, M. Henesian, C. B. Dane, and L. A. Hackel, "Integrated operations of the National Ignition Facility (NIF) optical pulse generation development system," Proc. SPIE 3492, 100-111 (1999).
[CrossRef]

Henesian, M. A.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004).
[CrossRef]

S. N. Dixit, I. M. Thomas, B. W. Woods, A. J. Morgan, M. A. Henesian, P. J. Wegner, and H. T. Powell, "Random phase plates for beam smoothing on the Nova laser," Appl. Opt. 32, 2543-2554 (1993).
[CrossRef] [PubMed]

W. H. Williams, J. M. Auerbach, M. A. Henesian, K. S. Jancaitis, K. R. Manes, N. C. Mehta, C. D. Orth, R. A. Sacks, M. J. Shaw, and C. C. Widmayer, "Optical propagation modeling for the National Ignition Facility," Proc. SPIE 5341, 277-278.

H. T. Powell, S. N. Dixit, and M. A. Henesian, Beam Smoothing Capability on the Nova Laser, LLNL Rep. UCRL-LR-105821-91-1, (Lawrence Livermore National Laboratory, 1990), pp. 28-38.

Herrmann, M. C.

S. W. Haan, M. C. Herrmann, P. A. Amendt, D. A Callahan, T. R. Dittrich, M. J. Edwards, O. S. Jones, M. M. Marinak, D. H. Munro, S. M. Pollaine, J. D. Salmonson, B. K. Spears, and L. J. Suter, "Update on specifications for NIF ignition targets, and their roll up into an error budget," Fusion Sci. Technol. 49, 553-557 (2006).

Hibbard, R. L.

Hinkel, D. E.

D. E. Hinkel, S. W. Haan, A. B. Langdon, T. R. Dittrich, C. H. Still, and M. M. Marinak, "National Ignition Facility targets driven at high radiation temperature: ignition, hydrodynamic stability, and laser-plasma interactions," Phys. Plasmas 11, 1128-1144 (2004).
[CrossRef]

Honig, J.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004).
[CrossRef]

Hopps, N. W.

J. K. Crane, R. B. Wilcox, N. W. Hopps, D. Browning, M. D. Martinez, B. Moran, F. Penko, J. E. Rothenberg, M. Henesian, C. B. Dane, and L. A. Hackel, "Integrated operations of the National Ignition Facility (NIF) optical pulse generation development system," Proc. SPIE 3492, 100-111 (1999).
[CrossRef]

House, R.

M. Shaw, W. Williams, R. House, and C. Haynam, "Laser performance operations model," Opt. Eng. 43, 2885-2895 (2004).
[CrossRef]

M. Shaw, W. Williams, K. Jancaitis, C. Widmayer, and R. House, "Performance and operational modeling of the National Ignition Facility," at the International Symposium on Optical Science and Technology (2003).

Hunt, J. T.

J. T. Hunt, K. R. Manes, J. R. Murray, P. A. Renard, R. Sawicki, J. B. Trenholme, and W. Williams, "Laser design basis for the National Ignition Facility," Fusion Technol. 26, 767-771 (1994).

Jancaitis, K.

M. Shaw, W. Williams, K. Jancaitis, C. Widmayer, and R. House, "Performance and operational modeling of the National Ignition Facility," at the International Symposium on Optical Science and Technology (2003).

Jancaitis, K. S.

W. H. Williams, J. M. Auerbach, M. A. Henesian, K. S. Jancaitis, K. R. Manes, N. C. Mehta, C. D. Orth, R. A. Sacks, M. J. Shaw, and C. C. Widmayer, "Optical propagation modeling for the National Ignition Facility," Proc. SPIE 5341, 277-278.

Jedlovec, D. R.

P. J. Wisoff, M. W. Bowers, G. V. Erbert, D. F. Browning, and D. R. Jedlovec, "NIF injection laser system," Proc. SPIE 5341, 146-155 (2004).
[CrossRef]

Jones, B.

M. D. Martinez, K. M. Skulina, F. J. Deadrick, J. K Crane, B. Moran, J. Braucht, B. Jones, S. Hawkins, R. Tilley, J. Crawford, D. Browning, and F. Penko, "Performance results of the high gain, Nd:glass, engineering prototype preamplifier module (PAM) for the National Ignition Facility (NIF)," Proc. SPIE 3611, 169-180 (1999).
[CrossRef]

Jones, O. S.

S. W. Haan, M. C. Herrmann, P. A. Amendt, D. A Callahan, T. R. Dittrich, M. J. Edwards, O. S. Jones, M. M. Marinak, D. H. Munro, S. M. Pollaine, J. D. Salmonson, B. K. Spears, and L. J. Suter, "Update on specifications for NIF ignition targets, and their roll up into an error budget," Fusion Sci. Technol. 49, 553-557 (2006).

Kaufmann, R. L.

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, "The physics basis for ignition using indirect-drive targets on the National Ignition Facility," Phys. Plasmas 11, 339-491 (2004).
[CrossRef]

Kessler, T.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, "Improved laser beam uniformity using the angular dispersion of frequency-modulated light," J. Appl. Phys. 66, 3456-3462 (1989).
[CrossRef]

Kyrazis, D. T.

Landen, O. T.

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, "The physics basis for ignition using indirect-drive targets on the National Ignition Facility," Phys. Plasmas 11, 339-491 (2004).
[CrossRef]

Langdon, A. B.

D. H. Munro, S. N. Dixit, A. B. Langdon, and J. R. Murray, "Polarization smoothing in a convergent beam," Appl. Opt. 43, 6639-6647 (2004).
[CrossRef]

D. E. Hinkel, S. W. Haan, A. B. Langdon, T. R. Dittrich, C. H. Still, and M. M. Marinak, "National Ignition Facility targets driven at high radiation temperature: ignition, hydrodynamic stability, and laser-plasma interactions," Phys. Plasmas 11, 1128-1144 (2004).
[CrossRef]

Latta, M. R.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, "Alignment and wavefront control systems of the National Ignition Facility," Opt. Eng. 43, 2873-2884 (2004).
[CrossRef]

Letzring, S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, "Improved laser beam uniformity using the angular dispersion of frequency-modulated light," J. Appl. Phys. 66, 3456-3462 (1989).
[CrossRef]

Lindl, J. D.

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, "The physics basis for ignition using indirect-drive targets on the National Ignition Facility," Phys. Plasmas 11, 339-491 (2004).
[CrossRef]

J. D. Lindl, "Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain," Phys. Plasmas 2, 3933-4024 (1995).
[CrossRef]

J. D. Lindl, Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive (Springer, 1998).

Manes, K. R.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004).
[CrossRef]

J. T. Hunt, K. R. Manes, J. R. Murray, P. A. Renard, R. Sawicki, J. B. Trenholme, and W. Williams, "Laser design basis for the National Ignition Facility," Fusion Technol. 26, 767-771 (1994).

K. R. Manes and W. W. Simmons, "Statistical optics applied to high-power glass lasers," J. Opt. Soc. Am. A 2, 528-538 (1984).
[CrossRef]

W. H. Williams, J. M. Auerbach, M. A. Henesian, K. S. Jancaitis, K. R. Manes, N. C. Mehta, C. D. Orth, R. A. Sacks, M. J. Shaw, and C. C. Widmayer, "Optical propagation modeling for the National Ignition Facility," Proc. SPIE 5341, 277-278.

Marinak, M. M.

S. W. Haan, M. C. Herrmann, P. A. Amendt, D. A Callahan, T. R. Dittrich, M. J. Edwards, O. S. Jones, M. M. Marinak, D. H. Munro, S. M. Pollaine, J. D. Salmonson, B. K. Spears, and L. J. Suter, "Update on specifications for NIF ignition targets, and their roll up into an error budget," Fusion Sci. Technol. 49, 553-557 (2006).

D. E. Hinkel, S. W. Haan, A. B. Langdon, T. R. Dittrich, C. H. Still, and M. M. Marinak, "National Ignition Facility targets driven at high radiation temperature: ignition, hydrodynamic stability, and laser-plasma interactions," Phys. Plasmas 11, 1128-1144 (2004).
[CrossRef]

Martinez, M. D.

J. K. Crane, R. B. Wilcox, N. W. Hopps, D. Browning, M. D. Martinez, B. Moran, F. Penko, J. E. Rothenberg, M. Henesian, C. B. Dane, and L. A. Hackel, "Integrated operations of the National Ignition Facility (NIF) optical pulse generation development system," Proc. SPIE 3492, 100-111 (1999).
[CrossRef]

M. D. Martinez, K. M. Skulina, F. J. Deadrick, J. K Crane, B. Moran, J. Braucht, B. Jones, S. Hawkins, R. Tilley, J. Crawford, D. Browning, and F. Penko, "Performance results of the high gain, Nd:glass, engineering prototype preamplifier module (PAM) for the National Ignition Facility (NIF)," Proc. SPIE 3611, 169-180 (1999).
[CrossRef]

Mehta, N. C.

W. H. Williams, J. M. Auerbach, M. A. Henesian, K. S. Jancaitis, K. R. Manes, N. C. Mehta, C. D. Orth, R. A. Sacks, M. J. Shaw, and C. C. Widmayer, "Optical propagation modeling for the National Ignition Facility," Proc. SPIE 5341, 277-278.

Menapace, J. A.

J. A. Menapace, S. N. Dixit, F. Y. Génin, and W. F. Brocious, "Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces," Proc. SPIE 5273, 220-230 (2003).
[CrossRef]

Merrill, R.

S. N. Dixit, I. M. Thomas, M. R. Rushford, R. Merrill, M. D. Perry, H. T. Powell and K. A. Nugent, "Kinoform phase plates for tailoring focal plane intensity profiles," LLNL Rep. UCRL-LR-105821-94-4, (Lawrence Livermore National Laboratory, 1994), pp. 152-159.

Milam, D.

Miller, G. H.

G. H. Miller, E. I. Moses, and C. R. Wuest, "The National Ignition Facility," Opt. Eng. 43, 2841-2853 (2004).
[CrossRef]

Milonni, P. W.

D. Eimerl, J. M. Auerbach, and P. W. Milonni, "Paraxial wave theory of second and third harmonic generation in uniaxial crystals: I. Narrowband pump fields," J. Mod. Opt. 42, 1037-1067 (1995).
[CrossRef]

Moran, B.

J. K. Crane, R. B. Wilcox, N. W. Hopps, D. Browning, M. D. Martinez, B. Moran, F. Penko, J. E. Rothenberg, M. Henesian, C. B. Dane, and L. A. Hackel, "Integrated operations of the National Ignition Facility (NIF) optical pulse generation development system," Proc. SPIE 3492, 100-111 (1999).
[CrossRef]

M. D. Martinez, K. M. Skulina, F. J. Deadrick, J. K Crane, B. Moran, J. Braucht, B. Jones, S. Hawkins, R. Tilley, J. Crawford, D. Browning, and F. Penko, "Performance results of the high gain, Nd:glass, engineering prototype preamplifier module (PAM) for the National Ignition Facility (NIF)," Proc. SPIE 3611, 169-180 (1999).
[CrossRef]

Morgan, A. J.

Moses, E. I.

E. I. Moses and C. R. Wuest, "The National Ignition Facility: laser performance and first experiments," Fusion Sci. Technol. 47, 314-322 (2005).

G. H. Miller, E. I. Moses, and C. R. Wuest, "The National Ignition Facility," Opt. Eng. 43, 2841-2853 (2004).
[CrossRef]

Munro, D. H.

S. W. Haan, M. C. Herrmann, P. A. Amendt, D. A Callahan, T. R. Dittrich, M. J. Edwards, O. S. Jones, M. M. Marinak, D. H. Munro, S. M. Pollaine, J. D. Salmonson, B. K. Spears, and L. J. Suter, "Update on specifications for NIF ignition targets, and their roll up into an error budget," Fusion Sci. Technol. 49, 553-557 (2006).

D. H. Munro, S. N. Dixit, A. B. Langdon, and J. R. Murray, "Polarization smoothing in a convergent beam," Appl. Opt. 43, 6639-6647 (2004).
[CrossRef]

Murray, J. R.

Norton, M. A.

Nugent, K. A.

S. N. Dixit, I. M. Thomas, M. R. Rushford, R. Merrill, M. D. Perry, H. T. Powell and K. A. Nugent, "Kinoform phase plates for tailoring focal plane intensity profiles," LLNL Rep. UCRL-LR-105821-94-4, (Lawrence Livermore National Laboratory, 1994), pp. 152-159.

Orth, C. D.

W. H. Williams, J. M. Auerbach, M. A. Henesian, K. S. Jancaitis, K. R. Manes, N. C. Mehta, C. D. Orth, R. A. Sacks, M. J. Shaw, and C. C. Widmayer, "Optical propagation modeling for the National Ignition Facility," Proc. SPIE 5341, 277-278.

Penko, F.

M. D. Martinez, K. M. Skulina, F. J. Deadrick, J. K Crane, B. Moran, J. Braucht, B. Jones, S. Hawkins, R. Tilley, J. Crawford, D. Browning, and F. Penko, "Performance results of the high gain, Nd:glass, engineering prototype preamplifier module (PAM) for the National Ignition Facility (NIF)," Proc. SPIE 3611, 169-180 (1999).
[CrossRef]

J. K. Crane, R. B. Wilcox, N. W. Hopps, D. Browning, M. D. Martinez, B. Moran, F. Penko, J. E. Rothenberg, M. Henesian, C. B. Dane, and L. A. Hackel, "Integrated operations of the National Ignition Facility (NIF) optical pulse generation development system," Proc. SPIE 3492, 100-111 (1999).
[CrossRef]

Perry, M. D.

S. N. Dixit, M. D. Feit, M. D. Perry, and H. T. Powell, "Designing fully continuous phase plates for tailoring focal plane irradiance profiles," Opt. Lett. 21, 1715-1717 (1996).
[CrossRef] [PubMed]

S. N. Dixit, I. M. Thomas, M. R. Rushford, R. Merrill, M. D. Perry, H. T. Powell and K. A. Nugent, "Kinoform phase plates for tailoring focal plane intensity profiles," LLNL Rep. UCRL-LR-105821-94-4, (Lawrence Livermore National Laboratory, 1994), pp. 152-159.

Pigg, D. C.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, "Alignment and wavefront control systems of the National Ignition Facility," Opt. Eng. 43, 2873-2884 (2004).
[CrossRef]

Pollaine, S. M.

S. W. Haan, M. C. Herrmann, P. A. Amendt, D. A Callahan, T. R. Dittrich, M. J. Edwards, O. S. Jones, M. M. Marinak, D. H. Munro, S. M. Pollaine, J. D. Salmonson, B. K. Spears, and L. J. Suter, "Update on specifications for NIF ignition targets, and their roll up into an error budget," Fusion Sci. Technol. 49, 553-557 (2006).

Powell, H. T.

S. N. Dixit, M. D. Feit, M. D. Perry, and H. T. Powell, "Designing fully continuous phase plates for tailoring focal plane irradiance profiles," Opt. Lett. 21, 1715-1717 (1996).
[CrossRef] [PubMed]

S. N. Dixit, I. M. Thomas, B. W. Woods, A. J. Morgan, M. A. Henesian, P. J. Wegner, and H. T. Powell, "Random phase plates for beam smoothing on the Nova laser," Appl. Opt. 32, 2543-2554 (1993).
[CrossRef] [PubMed]

S. N. Dixit, I. M. Thomas, M. R. Rushford, R. Merrill, M. D. Perry, H. T. Powell and K. A. Nugent, "Kinoform phase plates for tailoring focal plane intensity profiles," LLNL Rep. UCRL-LR-105821-94-4, (Lawrence Livermore National Laboratory, 1994), pp. 152-159.

H. T. Powell, S. N. Dixit, and M. A. Henesian, Beam Smoothing Capability on the Nova Laser, LLNL Rep. UCRL-LR-105821-91-1, (Lawrence Livermore National Laboratory, 1990), pp. 28-38.

Renard, P. A.

J. T. Hunt, K. R. Manes, J. R. Murray, P. A. Renard, R. Sawicki, J. B. Trenholme, and W. Williams, "Laser design basis for the National Ignition Facility," Fusion Technol. 26, 767-771 (1994).

Rothenberg, J. E.

J. K. Crane, R. B. Wilcox, N. W. Hopps, D. Browning, M. D. Martinez, B. Moran, F. Penko, J. E. Rothenberg, M. Henesian, C. B. Dane, and L. A. Hackel, "Integrated operations of the National Ignition Facility (NIF) optical pulse generation development system," Proc. SPIE 3492, 100-111 (1999).
[CrossRef]

J. E. Rothenberg, "Comparison of beam-smoothing methods for direct-drive inertial confinement fusion," J. Opt. Soc. Am. B 14, 1664-1671 (1997).
[CrossRef]

Rushford, M. R.

S. N. Dixit, I. M. Thomas, M. R. Rushford, R. Merrill, M. D. Perry, H. T. Powell and K. A. Nugent, "Kinoform phase plates for tailoring focal plane intensity profiles," LLNL Rep. UCRL-LR-105821-94-4, (Lawrence Livermore National Laboratory, 1994), pp. 152-159.

Sacks, R. A.

C. A. Haynam, R. A. Sacks, and M. J. Shaw, "Computational modeling in support of the National Ignition Facility operations," presented at the 8th International Conference on Accelerator and Large Experimental Physics and Controls Systems (ICALEPS, 2001).

W. H. Williams, J. M. Auerbach, M. A. Henesian, K. S. Jancaitis, K. R. Manes, N. C. Mehta, C. D. Orth, R. A. Sacks, M. J. Shaw, and C. C. Widmayer, "Optical propagation modeling for the National Ignition Facility," Proc. SPIE 5341, 277-278.

Salmon, J. T.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, "Alignment and wavefront control systems of the National Ignition Facility," Opt. Eng. 43, 2873-2884 (2004).
[CrossRef]

Salmonson, J. D.

S. W. Haan, M. C. Herrmann, P. A. Amendt, D. A Callahan, T. R. Dittrich, M. J. Edwards, O. S. Jones, M. M. Marinak, D. H. Munro, S. M. Pollaine, J. D. Salmonson, B. K. Spears, and L. J. Suter, "Update on specifications for NIF ignition targets, and their roll up into an error budget," Fusion Sci. Technol. 49, 553-557 (2006).

Sawicki, R.

J. T. Hunt, K. R. Manes, J. R. Murray, P. A. Renard, R. Sawicki, J. B. Trenholme, and W. Williams, "Laser design basis for the National Ignition Facility," Fusion Technol. 26, 767-771 (1994).

Shaw, M.

M. Shaw, W. Williams, R. House, and C. Haynam, "Laser performance operations model," Opt. Eng. 43, 2885-2895 (2004).
[CrossRef]

M. Shaw, W. Williams, K. Jancaitis, C. Widmayer, and R. House, "Performance and operational modeling of the National Ignition Facility," at the International Symposium on Optical Science and Technology (2003).

Shaw, M. J.

C. A. Haynam, R. A. Sacks, and M. J. Shaw, "Computational modeling in support of the National Ignition Facility operations," presented at the 8th International Conference on Accelerator and Large Experimental Physics and Controls Systems (ICALEPS, 2001).

W. H. Williams, J. M. Auerbach, M. A. Henesian, K. S. Jancaitis, K. R. Manes, N. C. Mehta, C. D. Orth, R. A. Sacks, M. J. Shaw, and C. C. Widmayer, "Optical propagation modeling for the National Ignition Facility," Proc. SPIE 5341, 277-278.

Short, R. W.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, "Improved laser beam uniformity using the angular dispersion of frequency-modulated light," J. Appl. Phys. 66, 3456-3462 (1989).
[CrossRef]

Simmons, W. W.

Skulina, K. M.

M. D. Martinez, K. M. Skulina, F. J. Deadrick, J. K Crane, B. Moran, J. Braucht, B. Jones, S. Hawkins, R. Tilley, J. Crawford, D. Browning, and F. Penko, "Performance results of the high gain, Nd:glass, engineering prototype preamplifier module (PAM) for the National Ignition Facility (NIF)," Proc. SPIE 3611, 169-180 (1999).
[CrossRef]

Skupsky, S.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, "Improved laser beam uniformity using the angular dispersion of frequency-modulated light," J. Appl. Phys. 66, 3456-3462 (1989).
[CrossRef]

Smith, I. C.

Smith, J. R.

Soures, J. M.

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, "Improved laser beam uniformity using the angular dispersion of frequency-modulated light," J. Appl. Phys. 66, 3456-3462 (1989).
[CrossRef]

Spaeth, M. L.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004).
[CrossRef]

Spears, B. K.

S. W. Haan, M. C. Herrmann, P. A. Amendt, D. A Callahan, T. R. Dittrich, M. J. Edwards, O. S. Jones, M. M. Marinak, D. H. Munro, S. M. Pollaine, J. D. Salmonson, B. K. Spears, and L. J. Suter, "Update on specifications for NIF ignition targets, and their roll up into an error budget," Fusion Sci. Technol. 49, 553-557 (2006).

Speck, D. R.

Still, C. H.

D. E. Hinkel, S. W. Haan, A. B. Langdon, T. R. Dittrich, C. H. Still, and M. M. Marinak, "National Ignition Facility targets driven at high radiation temperature: ignition, hydrodynamic stability, and laser-plasma interactions," Phys. Plasmas 11, 1128-1144 (2004).
[CrossRef]

Stolz, C. J.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, "Alignment and wavefront control systems of the National Ignition Facility," Opt. Eng. 43, 2873-2884 (2004).
[CrossRef]

Stowers, I. F.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004).
[CrossRef]

Suter, L. J.

S. W. Haan, M. C. Herrmann, P. A. Amendt, D. A Callahan, T. R. Dittrich, M. J. Edwards, O. S. Jones, M. M. Marinak, D. H. Munro, S. M. Pollaine, J. D. Salmonson, B. K. Spears, and L. J. Suter, "Update on specifications for NIF ignition targets, and their roll up into an error budget," Fusion Sci. Technol. 49, 553-557 (2006).

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, "The physics basis for ignition using indirect-drive targets on the National Ignition Facility," Phys. Plasmas 11, 339-491 (2004).
[CrossRef]

Sutton, S. B.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, "Alignment and wavefront control systems of the National Ignition Facility," Opt. Eng. 43, 2873-2884 (2004).
[CrossRef]

Tappert, F. D.

R. H. Hardin and F. D. Tappert, "Application of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations," SIAM Rev. 15, 423 (1973).

Thomas, I. M.

S. N. Dixit, I. M. Thomas, B. W. Woods, A. J. Morgan, M. A. Henesian, P. J. Wegner, and H. T. Powell, "Random phase plates for beam smoothing on the Nova laser," Appl. Opt. 32, 2543-2554 (1993).
[CrossRef] [PubMed]

S. N. Dixit, I. M. Thomas, M. R. Rushford, R. Merrill, M. D. Perry, H. T. Powell and K. A. Nugent, "Kinoform phase plates for tailoring focal plane intensity profiles," LLNL Rep. UCRL-LR-105821-94-4, (Lawrence Livermore National Laboratory, 1994), pp. 152-159.

Thompson, C. W.

Tilley, R.

M. D. Martinez, K. M. Skulina, F. J. Deadrick, J. K Crane, B. Moran, J. Braucht, B. Jones, S. Hawkins, R. Tilley, J. Crawford, D. Browning, and F. Penko, "Performance results of the high gain, Nd:glass, engineering prototype preamplifier module (PAM) for the National Ignition Facility (NIF)," Proc. SPIE 3611, 169-180 (1999).
[CrossRef]

Trenholme, J. B.

J. T. Hunt, K. R. Manes, J. R. Murray, P. A. Renard, R. Sawicki, J. B. Trenholme, and W. Williams, "Laser design basis for the National Ignition Facility," Fusion Technol. 26, 767-771 (1994).

Tukey, J. W.

P. M. Cooley and J. W. Tukey, "An algorithm for the machine computation of complex Fourier series," Math. Comput. 19, 291-301 (1965).

Van Atta, R. L.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, "Alignment and wavefront control systems of the National Ignition Facility," Opt. Eng. 43, 2873-2884 (2004).
[CrossRef]

Van Wonterghem, B. M.

Wegner, P. J.

Whitman, P. K.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004).
[CrossRef]

J. M. Auerbach, P. J. Wegner, S. A. Couture, D. Eimerl, R. L. Hibbard, D. Milam, M. A. Norton, P. K. Whitman, and L. A. Hackel, "Modeling of frequency doubling and tripling with measured crystal spatial refractive-index nonuniformities," Appl. Opt. 40, 1404-1411 (2001).
[CrossRef]

Widmayer, C.

M. Shaw, W. Williams, K. Jancaitis, C. Widmayer, and R. House, "Performance and operational modeling of the National Ignition Facility," at the International Symposium on Optical Science and Technology (2003).

Widmayer, C. C.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004).
[CrossRef]

W. H. Williams, J. M. Auerbach, M. A. Henesian, K. S. Jancaitis, K. R. Manes, N. C. Mehta, C. D. Orth, R. A. Sacks, M. J. Shaw, and C. C. Widmayer, "Optical propagation modeling for the National Ignition Facility," Proc. SPIE 5341, 277-278.

Wilcox, R. B.

J. K. Crane, R. B. Wilcox, N. W. Hopps, D. Browning, M. D. Martinez, B. Moran, F. Penko, J. E. Rothenberg, M. Henesian, C. B. Dane, and L. A. Hackel, "Integrated operations of the National Ignition Facility (NIF) optical pulse generation development system," Proc. SPIE 3492, 100-111 (1999).
[CrossRef]

J. R. Murray, J. R. Smith, R. B. Ehrlich, D. T. Kyrazis, C. W. Thompson, and R. B. Wilcox, "Observation and suppression of transverse stimulated Brillouin scattering in large optics," J. Opt. Soc. Am. B 6, 2402-2411 (1989).
[CrossRef]

Williams, W.

M. Shaw, W. Williams, R. House, and C. Haynam, "Laser performance operations model," Opt. Eng. 43, 2885-2895 (2004).
[CrossRef]

J. T. Hunt, K. R. Manes, J. R. Murray, P. A. Renard, R. Sawicki, J. B. Trenholme, and W. Williams, "Laser design basis for the National Ignition Facility," Fusion Technol. 26, 767-771 (1994).

M. Shaw, W. Williams, K. Jancaitis, C. Widmayer, and R. House, "Performance and operational modeling of the National Ignition Facility," at the International Symposium on Optical Science and Technology (2003).

Williams, W. H.

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004).
[CrossRef]

W. H. Williams, J. M. Auerbach, M. A. Henesian, K. S. Jancaitis, K. R. Manes, N. C. Mehta, C. D. Orth, R. A. Sacks, M. J. Shaw, and C. C. Widmayer, "Optical propagation modeling for the National Ignition Facility," Proc. SPIE 5341, 277-278.

Winters, S. E.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, "Alignment and wavefront control systems of the National Ignition Facility," Opt. Eng. 43, 2873-2884 (2004).
[CrossRef]

Wisoff, P. J.

P. J. Wisoff, M. W. Bowers, G. V. Erbert, D. F. Browning, and D. R. Jedlovec, "NIF injection laser system," Proc. SPIE 5341, 146-155 (2004).
[CrossRef]

Woods, B. W.

Wuest, C. R.

E. I. Moses and C. R. Wuest, "The National Ignition Facility: laser performance and first experiments," Fusion Sci. Technol. 47, 314-322 (2005).

G. H. Miller, E. I. Moses, and C. R. Wuest, "The National Ignition Facility," Opt. Eng. 43, 2841-2853 (2004).
[CrossRef]

Zacharias, R. A.

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, "Alignment and wavefront control systems of the National Ignition Facility," Opt. Eng. 43, 2873-2884 (2004).
[CrossRef]

Appl. Opt. (4)

Fusion Sci. Technol. (2)

E. I. Moses and C. R. Wuest, "The National Ignition Facility: laser performance and first experiments," Fusion Sci. Technol. 47, 314-322 (2005).

S. W. Haan, M. C. Herrmann, P. A. Amendt, D. A Callahan, T. R. Dittrich, M. J. Edwards, O. S. Jones, M. M. Marinak, D. H. Munro, S. M. Pollaine, J. D. Salmonson, B. K. Spears, and L. J. Suter, "Update on specifications for NIF ignition targets, and their roll up into an error budget," Fusion Sci. Technol. 49, 553-557 (2006).

Fusion Technol. (1)

J. T. Hunt, K. R. Manes, J. R. Murray, P. A. Renard, R. Sawicki, J. B. Trenholme, and W. Williams, "Laser design basis for the National Ignition Facility," Fusion Technol. 26, 767-771 (1994).

IEEE J. Quantum Electron. (1)

R. Craxton, "High-efficiency tripling schemes for high-power Nd-glass lasers," IEEE J. Quantum Electron. 17, 1771-1782 (1989).
[CrossRef]

J. Appl. Phys. (1)

S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and J. M. Soures, "Improved laser beam uniformity using the angular dispersion of frequency-modulated light," J. Appl. Phys. 66, 3456-3462 (1989).
[CrossRef]

J. Mod. Opt. (1)

D. Eimerl, J. M. Auerbach, and P. W. Milonni, "Paraxial wave theory of second and third harmonic generation in uniaxial crystals: I. Narrowband pump fields," J. Mod. Opt. 42, 1037-1067 (1995).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Math. Comput. (1)

P. M. Cooley and J. W. Tukey, "An algorithm for the machine computation of complex Fourier series," Math. Comput. 19, 291-301 (1965).

Opt. Eng. (5)

G. H. Miller, E. I. Moses, and C. R. Wuest, "The National Ignition Facility," Opt. Eng. 43, 2841-2853 (2004).
[CrossRef]

M. L. Spaeth, K. R. Manes, C. C. Widmayer, W. H. Williams, P. K. Whitman, M. A. Henesian, I. F. Stowers, and J. Honig, "National Ignition Facility wavefront requirements and optical architecture," Opt. Eng. 43, 2854-2865 (2004).
[CrossRef]

R. E. Bonanno, "Assembling and installing line-replaceable units for the National Ignition Facility," Opt. Eng. 43, 2866-2872 (2004).
[CrossRef]

R. A. Zacharias, N. R. Beer, E. S. Bliss, S. C. Burkhart, S. J. Cohen, S. B. Sutton, R. L. Van Atta, S. E. Winters, J. T. Salmon, M. R. Latta, C. J. Stolz, D. C. Pigg, and T. J. Arnold, "Alignment and wavefront control systems of the National Ignition Facility," Opt. Eng. 43, 2873-2884 (2004).
[CrossRef]

M. Shaw, W. Williams, R. House, and C. Haynam, "Laser performance operations model," Opt. Eng. 43, 2885-2895 (2004).
[CrossRef]

Opt. Lett. (1)

Phys. Plasmas (3)

J. D. Lindl, "Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain," Phys. Plasmas 2, 3933-4024 (1995).
[CrossRef]

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendenning, S. H. Glenzer, S. W. Haan, R. L. Kaufmann, O. T. Landen, and L. J. Suter, "The physics basis for ignition using indirect-drive targets on the National Ignition Facility," Phys. Plasmas 11, 339-491 (2004).
[CrossRef]

D. E. Hinkel, S. W. Haan, A. B. Langdon, T. R. Dittrich, C. H. Still, and M. M. Marinak, "National Ignition Facility targets driven at high radiation temperature: ignition, hydrodynamic stability, and laser-plasma interactions," Phys. Plasmas 11, 1128-1144 (2004).
[CrossRef]

Proc. SPIE (5)

J. A. Menapace, S. N. Dixit, F. Y. Génin, and W. F. Brocious, "Magnetorheological finishing for imprinting continuous phase plate structure onto optical surfaces," Proc. SPIE 5273, 220-230 (2003).
[CrossRef]

P. J. Wisoff, M. W. Bowers, G. V. Erbert, D. F. Browning, and D. R. Jedlovec, "NIF injection laser system," Proc. SPIE 5341, 146-155 (2004).
[CrossRef]

J. K. Crane, R. B. Wilcox, N. W. Hopps, D. Browning, M. D. Martinez, B. Moran, F. Penko, J. E. Rothenberg, M. Henesian, C. B. Dane, and L. A. Hackel, "Integrated operations of the National Ignition Facility (NIF) optical pulse generation development system," Proc. SPIE 3492, 100-111 (1999).
[CrossRef]

M. D. Martinez, K. M. Skulina, F. J. Deadrick, J. K Crane, B. Moran, J. Braucht, B. Jones, S. Hawkins, R. Tilley, J. Crawford, D. Browning, and F. Penko, "Performance results of the high gain, Nd:glass, engineering prototype preamplifier module (PAM) for the National Ignition Facility (NIF)," Proc. SPIE 3611, 169-180 (1999).
[CrossRef]

W. H. Williams, J. M. Auerbach, M. A. Henesian, K. S. Jancaitis, K. R. Manes, N. C. Mehta, C. D. Orth, R. A. Sacks, M. J. Shaw, and C. C. Widmayer, "Optical propagation modeling for the National Ignition Facility," Proc. SPIE 5341, 277-278.

SIAM Rev. (1)

R. H. Hardin and F. D. Tappert, "Application of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations," SIAM Rev. 15, 423 (1973).

Other (6)

J. Goodman, in Laser Speckle and Related Phenomena, J.C.Dainty, ed. (Springer-Verlag, 1984), Chap. 2.

H. T. Powell, S. N. Dixit, and M. A. Henesian, Beam Smoothing Capability on the Nova Laser, LLNL Rep. UCRL-LR-105821-91-1, (Lawrence Livermore National Laboratory, 1990), pp. 28-38.

S. N. Dixit, I. M. Thomas, M. R. Rushford, R. Merrill, M. D. Perry, H. T. Powell and K. A. Nugent, "Kinoform phase plates for tailoring focal plane intensity profiles," LLNL Rep. UCRL-LR-105821-94-4, (Lawrence Livermore National Laboratory, 1994), pp. 152-159.

J. D. Lindl, Inertial Confinement Fusion: The Quest for Ignition and Energy Gain Using Indirect Drive (Springer, 1998).

M. Shaw, W. Williams, K. Jancaitis, C. Widmayer, and R. House, "Performance and operational modeling of the National Ignition Facility," at the International Symposium on Optical Science and Technology (2003).

C. A. Haynam, R. A. Sacks, and M. J. Shaw, "Computational modeling in support of the National Ignition Facility operations," presented at the 8th International Conference on Accelerator and Large Experimental Physics and Controls Systems (ICALEPS, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (43)

Fig. 1
Fig. 1

NIF is approximately 150   m × 90   m and seven stories tall. The roof of the building has been removed from this aerial photo, and an engineering rendering of the laser is shown. The two laser bays are shown on the upper-left portion of the figure. The switchyard (in red) is shown on the lower-right side, as is the spherical target chamber (in silver), into which the 192 beamlines converge.

Fig. 2
Fig. 2

(Color online) NIF's large optics each have an area of approximately 40   cm × 40   cm . The optic shown is a 7.7   m focal length wedged lens used to focus one beam onto the target. The lens shown was used during the campaigns discussed in this paper. This photograph was taken after this lens was exposed to 11 shots with between 8 and 9.4   kJ of 351   nm light (equivalent to between 1.6 and 1.8   MJ of 351   nm light for the full 192 beam NIF).

Fig. 3
Fig. 3

(Color online) All of the 192 NIF laser beams are schematically shown focused into a single cylindrical hohlraum. Each cone shown in the figure is composed of four individual beams. The hohlraum is approximately 10   mm long by 5   mm in diameter. The laser entrance hole is 2.5   mm in diameter. Each laser beam will be pointed to a precise location on the hohlraum wall and will generate x rays that will then drive the implosion of the central 1   mm radius spherical fusion capsule. The ensuing nuclear reaction is expected to release over 10   MJ of energy.

Fig. 4
Fig. 4

(Color online) Schematic of one of the 192 beamlines in the National Ignition Facility. The laser's path through the optics is discussed in the text.

Fig. 5
Fig. 5

(Color online) Comparison of modeled (dashed and solid curves) and measured (open and solid circles) energies for eight shots on Bundle 31. The output energy is measured by the full aperture calorimeters.

Fig. 6
Fig. 6

(Color online) Plot of 1 ω peak power per beam versus 1 ω energy per beam for initial NIF shots. The dark solid curve is the LPOM's “equipment protection” operating limit.

Fig. 7
Fig. 7

Plot of 3 ω beam power versus 3 ω beam energy for initial NIF shots.

Fig. 8
Fig. 8

Near-field fluence of 1ω beam contrast (diamonds) versus 1 ω fluence, measured at the converter input in PDS. These points represent shots covering the 1 ω operating range, and pulse lengths, as shown in Fig. 6. Also shown, as a solid curve, is the measured amplifier gain versus fluence showing that the contrast drops as the gain saturates.

Fig. 9
Fig. 9

(Color online) Schematic and power and∕or energy levels of the master oscillator and NIF pulse-shaping system. Fiber amplifiers (triangles) are used to compensate for optical losses as the initial cw beam is chopped by the acousto-optic modulator, frequency broadened to 30   GHz bandwidth by the phase modulator, precompensated by the FM-to-AM compensator (to minimize amplitude modulation of the high-power beam), corrected for group-velocity dispersion in the dispersion compensator, then split, and finally temporally shaped in the AMC. The components shown produce the shaped pulse for all of the NIF's 48 preamplifier modules.

Fig. 10
Fig. 10

(Color online) Temporal pulse shape at the output of the MOR for the two PQ shots designated as first PQ (N060329-002-999) and second PQ (N060329-003-999). The pulse shape was measured with a 1   GHz transient digitizer.

Fig. 11
Fig. 11

(Color online) Schematic of ILS regenerative amplifier. Light enters the amplifier from the MOR fiber launch at the right of the figure (long-dashed line). It is collimated, passed through an optical isolator, and injected through a polarizer into the main regenerative amplifier cavity (solid line). After passing through the Pockels cell (PC1) once, the PC is switched on, trapping the pulse in the cavity for approximately 30 round trips. During each round trip, the pulse passes twice through a diode pumped rod amplifier. Prior to the final pass, the PC is switched off, and the light exits through a second polarizer (short-dashed line). A motorized half-wave plate in combination with a set of polarizers controls the energy transmitted to the next stage of amplification. A second Pockels cell (PC2) can be used to clip off a trailing portion of the pulse that is meant to saturate the regenerative amplifier for energy stability, but is not required in the rest of the laser. A 20 × beam expander in combination with a beam-shaping module sculpts the beam to the desired spatial shape (solid line on left).

Fig. 12
Fig. 12

Predicted (left) and measured, near-field profiles for the first (center) and second (right) performance qualification shots.

Fig. 13
Fig. 13

(Color online) Schematic of the MPA system. Light enters from the regenerative amplifier at the right of the figure (long-dashed line), and transmits through the polarizer. The polarization is rotated by a series of half-wave plates and quarter-wave plates (HWPs and QWPs) so that the pulse passes four times through the 32   mm flashlamp-pumped rod amplifier (solid line) before exiting through the polarizer. Each pass is optically relayed using a set of two vacuum relay telescopes (VRT). These VRTs are evacuated to prevent air breakdown at the central focus of the telescope. As the pulse exits the cavity (short-dashed line), it passes through a combination of a motorized HWP and a polarization-sensitive mirror to allow control of the energy transmitted to the PABTS and the main laser.

Fig. 14
Fig. 14

(Color online) Requested and measured temporal profiles at the output of the preamplifier module (prior to injection into the main laser) as measured by the ISP for the two PQ shots.

Fig. 15
Fig. 15

Comparison of (a) modeled and measured near-field 1ω fluence distributions at PDS for the (b) first and (c) second PQ shots, respectively.

Fig. 16
Fig. 16

Comparison of modeled and measured fluence probability distributions at the PDS 1ω diagnostic, over the central 27   cm × 27   cm of the beam, for the two PQ shots. The small shifts in mean 1ω fluence are due to differing total energies in the two PQ shots. The calculation is reported at the mean fluence of the two PQ shots over the central 27   cm × 27   cm of the beam. Measured contrast is nearly identical for both shots, in reasonable agreement with prediction, and well under our design goal of 10%.

Fig. 17
Fig. 17

Enclosed 1 ω focal-spot energy fractions for measurement and calculation of the two PQ shots. Both direct far-field measurements and predictions based on reconstruction of the field using the radial shear and near-field diagnostics are shown. The calculated far field applies to both shots.

Fig. 18
Fig. 18

(a) Calculated and directly measured 1 ω focal spots for the (b) first and (c) second PQ shots. All plots have a common axis, which is shown on the left. The change in peak fluence between the first and second shots is attributed to turbulence in the beam path.

Fig. 19
Fig. 19

(Color online) Illustration of type-I∕type-II converter scheme. The NIF doubler (SHG) thickness will range from 11 to 14   mm , and tripler (THG) thickness will range from 9 to 10   mm . The measurements described in this paper were primarily performed with a 14   mm SHG and 10   mm THG.

Fig. 20
Fig. 20

(Color online) Angular bandwidth of the type-I∕type II 3 ω conversion scheme versus drive irradiance for different choices of crystal thickness. The curves depict the angle away from exact phase matching at which conversion efficiency is decreased by 3%, with the bands at each SHG thickness ( L 1 ) spanning the THG thickness range from 9 to 10   mm .

Fig. 21
Fig. 21

Measured 3 ω energy out of the converter versus measured 1 ω energy into the converter for three illustrative cases: an 11∕9 converter with 3.5   ns FIT pulses (filled circles), a 14∕10 converter with 5.0   ns FIT pulses (open circles). The model (solid curve for FIT 11∕9, dashed for FIT 14∕10) is described in the text.

Fig. 22
Fig. 22

(Color online) Comparison of measured and predicted pulse shape for the 3 ω PQ pulse are shown along with the input 1 ω pulse shape.

Fig. 23
Fig. 23

Comparison of (a) modeled and measured near-field 3 ω fluence distributions at PDS for the (b) first and (c) second PQ shots, respectively.

Fig. 24
Fig. 24

(Color online) Comparison of modeled and measured fluence probability distributions at 3 ω PDS over the central 27   cm × 27   cm of the beam. The calculation is reported at the mean fluence over this aperture for the two shots. Measured contrast is nearly identical for both shots, 1 % higher than the model and well under our design goal of 15%.

Fig. 25
Fig. 25

(Color online) Enclosed 3 ω focal-spot energy fractions for measurement and calculation of the two PQ shots. Both direct far-field measurements and predictions based on reconstruction of the field using the radial shear and near-field diagnostics are shown.

Fig. 26
Fig. 26

(a) LPOM-calculated and directly measured 3ω focal spots for the (b) first and (c) second PQ shots. All plots have a common axis that is shown on the left.

Fig. 27
Fig. 27

(Color online) The two shaped pulses that were used in these experiments, scaled to their 192 beam equivalents. The temporal contrasts are 158:1 and 176:1 for the 1 and 1.8   MJ pulses, respectively.

Fig. 28
Fig. 28

(Color online) Schematic layout of the final optics assembly on the NIF is shown on the left. This mechanical system mounts to the NIF target chamber and contains the final set of optics for four NIF beamlines. The suite of optics for one of these beamlines is shown on the right. The same mechanical, optical, and beam control components that are used in the FOA at the target chamber are reproduced for a single beamline in the PDS.

Fig. 29
Fig. 29

(Color online) Measured depolarization on the NIF beam (a) without and (b) with the polarization rotator crystal. The linear gray scale varies from 0% (white) to 2% (black) depolarization. The spatial extent of the image is 38 cm on each side. The small spatial variations of beam polarization are due to the stress-induced birefringence in the vacuum-loaded spatial filter lenses. The average depolarization is 0.11% for each case, which results in a frequency conversion loss that is both small compared to the 1 ω and 3 ω FOA transmission losses shown previously in Table 3 and negligible in an absolute sense.

Fig. 30
Fig. 30

(Color online) Comparison of measured (top) and calculated (bottom) NIF focal spots with no applied SSD. The images on the left are from a 1 MJ shot with a 0.50   mm × 0.95   mm FWHM spot-size CPP. Images on the right are from a 1.8 MJ shot with a 1.16   mm × 1.3   mm FWHM spot-size CPP. The measured data are from the shots described in Table 4. Measured (time-integrated) images and calculated (time-dependent) images are both normalized to an input power of 1 TW. See text for discussion.

Fig. 31
Fig. 31

Comparison of the encircled energy fraction and the FOPAI for the 1   MJ and the 1.8   MJ shots described in Fig. 30. The encircled energy was calculated in elliptical coordinates with eccentricity of 0.55 for the 1   MJ case and 0.88 for the 1.8   MJ case. The total power is normalized to 1 TW for each case.

Fig. 32
Fig. 32

(Color online) Comparison of measured (top) and calculated (bottom) focal spots with both CPP and SSD. The images on the left are from a 1   MJ shot with a 0.50   mm × 0.95   mm FWHM spot size CPP. The images on the right are from a 1.8   MJ shot with a 1.16   mm × 1.3   mm FWHM spot-size CPP. The measured data are from the shots described in Table 4. The 3 ω spectra used to generate the predictions are shown in Fig. 33. The spots are normalized for 1 TW total power.

Fig. 33
Fig. 33

Measured (solid curves) and the fitted (dashed curves) spectra for the 1   MJ (left) and the 1.8   MJ   ( r i g h t ) shots described in Table 4. The fit assumes a sum of 3 and 17   GHz FM components and yields 3 ω SBS bandwidths of 90   GHz for both cases and 3 ω SSD bandwidths of 270 and 120   GHz for the 1 and 1.8   MJ shots, respectively.

Fig. 34
Fig. 34

FOPAI comparisons for CPP-generated, SSD-smoothed focal spots. All curves are normalized to 1 TW total power. Solid curves are measurements; dashed curves are model. The 1   MJ curves are on the right; 1.8   MJ on the left.

Fig. 35
Fig. 35

(Color online) Comparison of measurement to request for 1   MJ [(a) and (b)] and 1.8   MJ [(c) and (d)] pulses, showing the peak [(a), (c)] and foot [(b), (d)] for both.

Fig. 36
Fig. 36

(Color online) PDS layout showing the optical path and locations of the diagnostics.

Fig. 37
Fig. 37

(Color online) Calorimeter energy balance for shots fired during the PDS campaign plotted against the 3ω energy generated.

Fig. 38
Fig. 38

(Color online) Measurement and model of 3 ω point source located at the prime focus. (a) CCD image cropped to a size of 100 μ m × 100 μ m at the image plane, (b) horizontal and vertical line-outs superimposed on an Airy diffraction pattern model with a central lobe diameter of 18 μm between the first nulls.

Fig. 39
Fig. 39

(Color online) Measured Ne spectral line at 352.04714 nm using the PDS 3 ω spectrometer. The line shape is a convolution of the Ne line with the spectrometer instrument response function, implying an instrumental FWHM of ∼5.7 GHz.

Fig. 40
Fig. 40

(Color online) Schematic of the ISP (bottom) and OSP (top) 1ω diagnostics. Light is directed to the OSP from the diagnostic beam splitter.

Fig. 41
Fig. 41

(Color online) Illustration of the LPOM shot setup process. High-level shot goals and laser configuration data are read by the LPOM and used to generate shot set points for the injection laser system and for diagnostic systems. Shot data is fed back to the LPOM for postshot analysis and for optimization of laser models.

Fig. 42
Fig. 42

(Color online) LPOM's shot verification screen provides a top-level performance summary and drill-down capability to detailed shot data.

Fig. 43
Fig. 43

(Color online) LPOM's web interface provides a powerful suite of data trending and analysis tools.

Tables (5)

Tables Icon

Table 1 Analysis of the 1ω Beam Energetics of Four Identical 19 kJ Shots

Tables Icon

Table 2 Requested and Measured Energies at the Input and Output of the MPA

Tables Icon

Table 3 Transmission of FOA Optics as a Function of Wavelength

Tables Icon

Table 4 Three Methods of Beam Conditioning Were Demonstrated Simultaneously on Two Candidate Ignition Temporal Pulse Shapes

Tables Icon

Table 5 Comparison between Modeled and Measured Frequency-Converter Performance

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Fluence   beam   contrast 1 n m i = 1 m j = 1 n ( F ( x i , y j ) F ¯ F ¯ ) 2 ,
F ( x i , y j ) = pixelated   fluence   from near-field   camera   image ,
F ¯ = average   fluence   of   image .
FOPAI ( I 0 ) = beam   area where   I ( x , y ) I 0 I ( x , y ) d x d y beam   area I ( x , y ) d x d y .

Metrics