Abstract

A highly dispersive dual-concentric-core pure silica photonic crystal fiber is designed with a maximum chromatic dispersion value of about 9500ps/(nm   km) around the 1.56  μm wavelength region and a full width at half-maximum (FWHM) of 55   nm. The change in the dispersion–bandwidth product as a function of period is carefully studied by using the plane wave expansion method. The coupled mode theory matches well with the plane wave expansion method that was used to simulate the chromatic dispersion. This kind of a photonic crystal fiber structure is suitable for high-dispersion application in phased array antenna systems based on photonic crystal fiber arrays.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, "Conception, realization, and characterization of a very high negative chromatic dispersion fiber," Opt. Fiber Technol. 8, 89-105 (2002).
    [CrossRef]
  2. E. Desurvire, Erbium-Doped Fiber Amplifiers (Wiley, 1994).
  3. F. Gérôme, J. L. Auguste, J. Maury, J. M. Blondy, and J. Marcou, "Theoretical and experimental analysis of a chromatic dispersion compensating module using a dual concentric core fiber," J. Lightwave Technol. 24, 442-448 (2006).
    [CrossRef]
  4. B. Jopson and A. Gnauck, "Dispersion compensation for optical fiber systems," IEEE Commun. Mag. 33, 96-102 (1995).
    [CrossRef]
  5. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, "All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  6. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  7. Z. Yusoff, J. H. Lee, W. Belardi, T. M. Monro, P. C. Teh, and D. J. Richardson, "Raman effects in a highly nonlinear holey fiber: amplification and modulation," Opt. Lett. 27, 424-426 (2002).
    [CrossRef]
  8. K. Tajima, J. Zhou, K. Nakajima, and K. Sato, "Ultralow loss and long length photonic crystal fiber," J. Lightwave Technol. 22, 7-10 (2004).
    [CrossRef]
  9. M. Koshib and K. Saitoh, "Simple evaluation of confinement losses in holey fibers," Opt. Commun. 253, 95-98 (2005).
    [CrossRef]
  10. S. K. Varshney, K. Saitoh, and M. Koshiba, "A novel design for dispersion compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2064 (2005).
    [CrossRef]
  11. Y. Jiang, T. Ling, L. Gu, W. Jiang, X. Chen, and R. T. Chen, "Highly dispersive photonic crystal waveguides and their applications in optical modulators and true-time delay lines," Proc. SPIE 6128, 61280Y (2006).
    [CrossRef]
  12. S. K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express. 14, 3528-3540 (2006).
    [CrossRef] [PubMed]
  13. B. J. Mangan, F. Couny, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, M. Banham, M. W. Mason, D. F. Murphy, E. A. M. Brown, and H. Sabert, "Slope-matched dispersion-compensating photonic crystal fibre," in Conference on Lasers and Electro-Optics, 2004 (CLEO) (Optical Society of America, 2004), pp. 1069-1070.
  14. Y. Jiang, Z. Shi, B. Howley, X. Chen, M. Y. Chen, and R. T. Chen, "Delay-time-enhanced photonic crystal fiber array for wireless communications using two-dimensional X-band phased-array antennas," Opt. Eng. 44, 125001 (2005).
    [CrossRef]
  15. Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, "Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna," IEEE Photon. Technol. Lett. 17, 187-189 (2005).
    [CrossRef]
  16. Y. Jiang, Z. Shi, B. Howley, and R. T. Chen, "Highly dispersive photonic crystal fibers for true-time-delay modules of an X-band phased array antenna," Proc. SPIE 5360, 253-258 (2004).
    [CrossRef]
  17. F. Gérôme, J. L. Auguste, and J. M. Blondy, "Design of dispersion-compensating fibers based on a dual-concentric-core photonic crystal fiber," Opt. Lett. 29, 2725-2727 (2004).
    [CrossRef] [PubMed]
  18. U. Peschel, T. Peschel, and F. Lederer, "A compact device for highly efficient dispersion compensation in fiber transmission," Appl. Phys. Lett. 67, 2111-2113 (1995).
    [CrossRef]
  19. K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phy. Rev. Lett. 65, 3152-3155 (1990).
    [CrossRef]
  20. RSoft Photonics CAD Suite, Version 5.1.7.
  21. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," J. Sel. Top. Quantum Electron. 6, 150-162 (2000).
    [CrossRef]
  22. R. Scarmozzino and R. M. Osgood, Jr., "Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications," J. Opt. Soc. Am. A 8, 724-731 (1991).
    [CrossRef]

2006 (3)

Y. Jiang, T. Ling, L. Gu, W. Jiang, X. Chen, and R. T. Chen, "Highly dispersive photonic crystal waveguides and their applications in optical modulators and true-time delay lines," Proc. SPIE 6128, 61280Y (2006).
[CrossRef]

S. K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express. 14, 3528-3540 (2006).
[CrossRef] [PubMed]

F. Gérôme, J. L. Auguste, J. Maury, J. M. Blondy, and J. Marcou, "Theoretical and experimental analysis of a chromatic dispersion compensating module using a dual concentric core fiber," J. Lightwave Technol. 24, 442-448 (2006).
[CrossRef]

2005 (4)

Y. Jiang, Z. Shi, B. Howley, X. Chen, M. Y. Chen, and R. T. Chen, "Delay-time-enhanced photonic crystal fiber array for wireless communications using two-dimensional X-band phased-array antennas," Opt. Eng. 44, 125001 (2005).
[CrossRef]

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, "Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna," IEEE Photon. Technol. Lett. 17, 187-189 (2005).
[CrossRef]

M. Koshib and K. Saitoh, "Simple evaluation of confinement losses in holey fibers," Opt. Commun. 253, 95-98 (2005).
[CrossRef]

S. K. Varshney, K. Saitoh, and M. Koshiba, "A novel design for dispersion compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2064 (2005).
[CrossRef]

2004 (3)

2002 (2)

J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, "Conception, realization, and characterization of a very high negative chromatic dispersion fiber," Opt. Fiber Technol. 8, 89-105 (2002).
[CrossRef]

Z. Yusoff, J. H. Lee, W. Belardi, T. M. Monro, P. C. Teh, and D. J. Richardson, "Raman effects in a highly nonlinear holey fiber: amplification and modulation," Opt. Lett. 27, 424-426 (2002).
[CrossRef]

2000 (1)

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," J. Sel. Top. Quantum Electron. 6, 150-162 (2000).
[CrossRef]

1997 (1)

1996 (1)

1995 (2)

B. Jopson and A. Gnauck, "Dispersion compensation for optical fiber systems," IEEE Commun. Mag. 33, 96-102 (1995).
[CrossRef]

U. Peschel, T. Peschel, and F. Lederer, "A compact device for highly efficient dispersion compensation in fiber transmission," Appl. Phys. Lett. 67, 2111-2113 (1995).
[CrossRef]

1991 (1)

1990 (1)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phy. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef]

Atkin, D. M.

Auguste, J. L.

Banham, M.

B. J. Mangan, F. Couny, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, M. Banham, M. W. Mason, D. F. Murphy, E. A. M. Brown, and H. Sabert, "Slope-matched dispersion-compensating photonic crystal fibre," in Conference on Lasers and Electro-Optics, 2004 (CLEO) (Optical Society of America, 2004), pp. 1069-1070.

Belardi, W.

Birks, T. A.

Blondy, J. M.

Brost, G.

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, "Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna," IEEE Photon. Technol. Lett. 17, 187-189 (2005).
[CrossRef]

Brown, E. A. M.

B. J. Mangan, F. Couny, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, M. Banham, M. W. Mason, D. F. Murphy, E. A. M. Brown, and H. Sabert, "Slope-matched dispersion-compensating photonic crystal fibre," in Conference on Lasers and Electro-Optics, 2004 (CLEO) (Optical Society of America, 2004), pp. 1069-1070.

Chan, C. T.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phy. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef]

Chen, M. Y.

Y. Jiang, Z. Shi, B. Howley, X. Chen, M. Y. Chen, and R. T. Chen, "Delay-time-enhanced photonic crystal fiber array for wireless communications using two-dimensional X-band phased-array antennas," Opt. Eng. 44, 125001 (2005).
[CrossRef]

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, "Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna," IEEE Photon. Technol. Lett. 17, 187-189 (2005).
[CrossRef]

Chen, R. T.

Y. Jiang, T. Ling, L. Gu, W. Jiang, X. Chen, and R. T. Chen, "Highly dispersive photonic crystal waveguides and their applications in optical modulators and true-time delay lines," Proc. SPIE 6128, 61280Y (2006).
[CrossRef]

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, "Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna," IEEE Photon. Technol. Lett. 17, 187-189 (2005).
[CrossRef]

Y. Jiang, Z. Shi, B. Howley, X. Chen, M. Y. Chen, and R. T. Chen, "Delay-time-enhanced photonic crystal fiber array for wireless communications using two-dimensional X-band phased-array antennas," Opt. Eng. 44, 125001 (2005).
[CrossRef]

Y. Jiang, Z. Shi, B. Howley, and R. T. Chen, "Highly dispersive photonic crystal fibers for true-time-delay modules of an X-band phased array antenna," Proc. SPIE 5360, 253-258 (2004).
[CrossRef]

Chen, X.

Y. Jiang, T. Ling, L. Gu, W. Jiang, X. Chen, and R. T. Chen, "Highly dispersive photonic crystal waveguides and their applications in optical modulators and true-time delay lines," Proc. SPIE 6128, 61280Y (2006).
[CrossRef]

Y. Jiang, Z. Shi, B. Howley, X. Chen, M. Y. Chen, and R. T. Chen, "Delay-time-enhanced photonic crystal fiber array for wireless communications using two-dimensional X-band phased-array antennas," Opt. Eng. 44, 125001 (2005).
[CrossRef]

Couny, F.

B. J. Mangan, F. Couny, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, M. Banham, M. W. Mason, D. F. Murphy, E. A. M. Brown, and H. Sabert, "Slope-matched dispersion-compensating photonic crystal fibre," in Conference on Lasers and Electro-Optics, 2004 (CLEO) (Optical Society of America, 2004), pp. 1069-1070.

Desurvire, E.

E. Desurvire, Erbium-Doped Fiber Amplifiers (Wiley, 1994).

Dussardier, B.

J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, "Conception, realization, and characterization of a very high negative chromatic dispersion fiber," Opt. Fiber Technol. 8, 89-105 (2002).
[CrossRef]

Farr, L.

B. J. Mangan, F. Couny, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, M. Banham, M. W. Mason, D. F. Murphy, E. A. M. Brown, and H. Sabert, "Slope-matched dispersion-compensating photonic crystal fibre," in Conference on Lasers and Electro-Optics, 2004 (CLEO) (Optical Society of America, 2004), pp. 1069-1070.

Fujisawa, T.

S. K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express. 14, 3528-3540 (2006).
[CrossRef] [PubMed]

Gérôme, F.

Gnauck, A.

B. Jopson and A. Gnauck, "Dispersion compensation for optical fiber systems," IEEE Commun. Mag. 33, 96-102 (1995).
[CrossRef]

Gopinath, A.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," J. Sel. Top. Quantum Electron. 6, 150-162 (2000).
[CrossRef]

Gu, L.

Y. Jiang, T. Ling, L. Gu, W. Jiang, X. Chen, and R. T. Chen, "Highly dispersive photonic crystal waveguides and their applications in optical modulators and true-time delay lines," Proc. SPIE 6128, 61280Y (2006).
[CrossRef]

Helfert, S.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," J. Sel. Top. Quantum Electron. 6, 150-162 (2000).
[CrossRef]

Ho, K. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phy. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef]

Howley, B.

Y. Jiang, Z. Shi, B. Howley, X. Chen, M. Y. Chen, and R. T. Chen, "Delay-time-enhanced photonic crystal fiber array for wireless communications using two-dimensional X-band phased-array antennas," Opt. Eng. 44, 125001 (2005).
[CrossRef]

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, "Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna," IEEE Photon. Technol. Lett. 17, 187-189 (2005).
[CrossRef]

Y. Jiang, Z. Shi, B. Howley, and R. T. Chen, "Highly dispersive photonic crystal fibers for true-time-delay modules of an X-band phased array antenna," Proc. SPIE 5360, 253-258 (2004).
[CrossRef]

Jiang, W.

Y. Jiang, T. Ling, L. Gu, W. Jiang, X. Chen, and R. T. Chen, "Highly dispersive photonic crystal waveguides and their applications in optical modulators and true-time delay lines," Proc. SPIE 6128, 61280Y (2006).
[CrossRef]

Jiang, Y.

Y. Jiang, T. Ling, L. Gu, W. Jiang, X. Chen, and R. T. Chen, "Highly dispersive photonic crystal waveguides and their applications in optical modulators and true-time delay lines," Proc. SPIE 6128, 61280Y (2006).
[CrossRef]

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, "Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna," IEEE Photon. Technol. Lett. 17, 187-189 (2005).
[CrossRef]

Y. Jiang, Z. Shi, B. Howley, X. Chen, M. Y. Chen, and R. T. Chen, "Delay-time-enhanced photonic crystal fiber array for wireless communications using two-dimensional X-band phased-array antennas," Opt. Eng. 44, 125001 (2005).
[CrossRef]

Y. Jiang, Z. Shi, B. Howley, and R. T. Chen, "Highly dispersive photonic crystal fibers for true-time-delay modules of an X-band phased array antenna," Proc. SPIE 5360, 253-258 (2004).
[CrossRef]

Jindal, R.

J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, "Conception, realization, and characterization of a very high negative chromatic dispersion fiber," Opt. Fiber Technol. 8, 89-105 (2002).
[CrossRef]

Jopson, B.

B. Jopson and A. Gnauck, "Dispersion compensation for optical fiber systems," IEEE Commun. Mag. 33, 96-102 (1995).
[CrossRef]

Knight, J. C.

Koshib, M.

M. Koshib and K. Saitoh, "Simple evaluation of confinement losses in holey fibers," Opt. Commun. 253, 95-98 (2005).
[CrossRef]

Koshiba, M.

S. K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express. 14, 3528-3540 (2006).
[CrossRef] [PubMed]

S. K. Varshney, K. Saitoh, and M. Koshiba, "A novel design for dispersion compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2064 (2005).
[CrossRef]

Langford, A.

B. J. Mangan, F. Couny, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, M. Banham, M. W. Mason, D. F. Murphy, E. A. M. Brown, and H. Sabert, "Slope-matched dispersion-compensating photonic crystal fibre," in Conference on Lasers and Electro-Optics, 2004 (CLEO) (Optical Society of America, 2004), pp. 1069-1070.

Lederer, F.

U. Peschel, T. Peschel, and F. Lederer, "A compact device for highly efficient dispersion compensation in fiber transmission," Appl. Phys. Lett. 67, 2111-2113 (1995).
[CrossRef]

Lee, C.

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, "Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna," IEEE Photon. Technol. Lett. 17, 187-189 (2005).
[CrossRef]

Lee, J. H.

Ling, T.

Y. Jiang, T. Ling, L. Gu, W. Jiang, X. Chen, and R. T. Chen, "Highly dispersive photonic crystal waveguides and their applications in optical modulators and true-time delay lines," Proc. SPIE 6128, 61280Y (2006).
[CrossRef]

Mangan, B. J.

B. J. Mangan, F. Couny, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, M. Banham, M. W. Mason, D. F. Murphy, E. A. M. Brown, and H. Sabert, "Slope-matched dispersion-compensating photonic crystal fibre," in Conference on Lasers and Electro-Optics, 2004 (CLEO) (Optical Society of America, 2004), pp. 1069-1070.

Marcou, J.

F. Gérôme, J. L. Auguste, J. Maury, J. M. Blondy, and J. Marcou, "Theoretical and experimental analysis of a chromatic dispersion compensating module using a dual concentric core fiber," J. Lightwave Technol. 24, 442-448 (2006).
[CrossRef]

J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, "Conception, realization, and characterization of a very high negative chromatic dispersion fiber," Opt. Fiber Technol. 8, 89-105 (2002).
[CrossRef]

Mason, M. W.

B. J. Mangan, F. Couny, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, M. Banham, M. W. Mason, D. F. Murphy, E. A. M. Brown, and H. Sabert, "Slope-matched dispersion-compensating photonic crystal fibre," in Conference on Lasers and Electro-Optics, 2004 (CLEO) (Optical Society of America, 2004), pp. 1069-1070.

Maury, J.

F. Gérôme, J. L. Auguste, J. Maury, J. M. Blondy, and J. Marcou, "Theoretical and experimental analysis of a chromatic dispersion compensating module using a dual concentric core fiber," J. Lightwave Technol. 24, 442-448 (2006).
[CrossRef]

J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, "Conception, realization, and characterization of a very high negative chromatic dispersion fiber," Opt. Fiber Technol. 8, 89-105 (2002).
[CrossRef]

Monnom, G.

J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, "Conception, realization, and characterization of a very high negative chromatic dispersion fiber," Opt. Fiber Technol. 8, 89-105 (2002).
[CrossRef]

Monro, T. M.

Murphy, D. F.

B. J. Mangan, F. Couny, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, M. Banham, M. W. Mason, D. F. Murphy, E. A. M. Brown, and H. Sabert, "Slope-matched dispersion-compensating photonic crystal fibre," in Conference on Lasers and Electro-Optics, 2004 (CLEO) (Optical Society of America, 2004), pp. 1069-1070.

Nakajima, K.

Osgood, R. M.

Pal, B. P.

J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, "Conception, realization, and characterization of a very high negative chromatic dispersion fiber," Opt. Fiber Technol. 8, 89-105 (2002).
[CrossRef]

Peschel, T.

U. Peschel, T. Peschel, and F. Lederer, "A compact device for highly efficient dispersion compensation in fiber transmission," Appl. Phys. Lett. 67, 2111-2113 (1995).
[CrossRef]

Peschel, U.

U. Peschel, T. Peschel, and F. Lederer, "A compact device for highly efficient dispersion compensation in fiber transmission," Appl. Phys. Lett. 67, 2111-2113 (1995).
[CrossRef]

Pregla, R.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," J. Sel. Top. Quantum Electron. 6, 150-162 (2000).
[CrossRef]

Richardson, D. J.

Roberts, P. J.

B. J. Mangan, F. Couny, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, M. Banham, M. W. Mason, D. F. Murphy, E. A. M. Brown, and H. Sabert, "Slope-matched dispersion-compensating photonic crystal fibre," in Conference on Lasers and Electro-Optics, 2004 (CLEO) (Optical Society of America, 2004), pp. 1069-1070.

Russell, P. St. J.

Sabert, H.

B. J. Mangan, F. Couny, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, M. Banham, M. W. Mason, D. F. Murphy, E. A. M. Brown, and H. Sabert, "Slope-matched dispersion-compensating photonic crystal fibre," in Conference on Lasers and Electro-Optics, 2004 (CLEO) (Optical Society of America, 2004), pp. 1069-1070.

Saitoh, K.

S. K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express. 14, 3528-3540 (2006).
[CrossRef] [PubMed]

M. Koshib and K. Saitoh, "Simple evaluation of confinement losses in holey fibers," Opt. Commun. 253, 95-98 (2005).
[CrossRef]

S. K. Varshney, K. Saitoh, and M. Koshiba, "A novel design for dispersion compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2064 (2005).
[CrossRef]

Sato, K.

Scarmozzino, R.

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," J. Sel. Top. Quantum Electron. 6, 150-162 (2000).
[CrossRef]

R. Scarmozzino and R. M. Osgood, Jr., "Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications," J. Opt. Soc. Am. A 8, 724-731 (1991).
[CrossRef]

Shi, Z.

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, "Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna," IEEE Photon. Technol. Lett. 17, 187-189 (2005).
[CrossRef]

Y. Jiang, Z. Shi, B. Howley, X. Chen, M. Y. Chen, and R. T. Chen, "Delay-time-enhanced photonic crystal fiber array for wireless communications using two-dimensional X-band phased-array antennas," Opt. Eng. 44, 125001 (2005).
[CrossRef]

Y. Jiang, Z. Shi, B. Howley, and R. T. Chen, "Highly dispersive photonic crystal fibers for true-time-delay modules of an X-band phased array antenna," Proc. SPIE 5360, 253-258 (2004).
[CrossRef]

Soukoulis, C. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phy. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef]

Tajima, K.

Teh, P. C.

Thyagarajan, K.

J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, "Conception, realization, and characterization of a very high negative chromatic dispersion fiber," Opt. Fiber Technol. 8, 89-105 (2002).
[CrossRef]

Varshney, S. K.

S. K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express. 14, 3528-3540 (2006).
[CrossRef] [PubMed]

S. K. Varshney, K. Saitoh, and M. Koshiba, "A novel design for dispersion compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2064 (2005).
[CrossRef]

Williams, D. P.

B. J. Mangan, F. Couny, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, M. Banham, M. W. Mason, D. F. Murphy, E. A. M. Brown, and H. Sabert, "Slope-matched dispersion-compensating photonic crystal fibre," in Conference on Lasers and Electro-Optics, 2004 (CLEO) (Optical Society of America, 2004), pp. 1069-1070.

Yusoff, Z.

Zhou, J.

Zhou, Q.

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, "Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna," IEEE Photon. Technol. Lett. 17, 187-189 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

U. Peschel, T. Peschel, and F. Lederer, "A compact device for highly efficient dispersion compensation in fiber transmission," Appl. Phys. Lett. 67, 2111-2113 (1995).
[CrossRef]

IEEE Commun. Mag. (1)

B. Jopson and A. Gnauck, "Dispersion compensation for optical fiber systems," IEEE Commun. Mag. 33, 96-102 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. K. Varshney, K. Saitoh, and M. Koshiba, "A novel design for dispersion compensating photonic crystal fiber Raman amplifier," IEEE Photon. Technol. Lett. 17, 2062-2064 (2005).
[CrossRef]

Y. Jiang, B. Howley, Z. Shi, Q. Zhou, R. T. Chen, M. Y. Chen, G. Brost, and C. Lee, "Dispersion-enhanced photonic crystal fiber array for a true time-delay structured X-band phased array antenna," IEEE Photon. Technol. Lett. 17, 187-189 (2005).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. A (1)

J. Sel. Top. Quantum Electron. (1)

R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, "Numerical techniques for modeling guided-wave photonic devices," J. Sel. Top. Quantum Electron. 6, 150-162 (2000).
[CrossRef]

Opt. Commun. (1)

M. Koshib and K. Saitoh, "Simple evaluation of confinement losses in holey fibers," Opt. Commun. 253, 95-98 (2005).
[CrossRef]

Opt. Eng. (1)

Y. Jiang, Z. Shi, B. Howley, X. Chen, M. Y. Chen, and R. T. Chen, "Delay-time-enhanced photonic crystal fiber array for wireless communications using two-dimensional X-band phased-array antennas," Opt. Eng. 44, 125001 (2005).
[CrossRef]

Opt. Express. (1)

S. K. Varshney, T. Fujisawa, K. Saitoh, and M. Koshiba, "Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band," Opt. Express. 14, 3528-3540 (2006).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

J. L. Auguste, J. M. Blondy, J. Maury, J. Marcou, B. Dussardier, G. Monnom, R. Jindal, K. Thyagarajan, and B. P. Pal, "Conception, realization, and characterization of a very high negative chromatic dispersion fiber," Opt. Fiber Technol. 8, 89-105 (2002).
[CrossRef]

Opt. Lett. (4)

Phy. Rev. Lett. (1)

K. M. Ho, C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phy. Rev. Lett. 65, 3152-3155 (1990).
[CrossRef]

Proc. SPIE (2)

Y. Jiang, T. Ling, L. Gu, W. Jiang, X. Chen, and R. T. Chen, "Highly dispersive photonic crystal waveguides and their applications in optical modulators and true-time delay lines," Proc. SPIE 6128, 61280Y (2006).
[CrossRef]

Y. Jiang, Z. Shi, B. Howley, and R. T. Chen, "Highly dispersive photonic crystal fibers for true-time-delay modules of an X-band phased array antenna," Proc. SPIE 5360, 253-258 (2004).
[CrossRef]

Other (3)

B. J. Mangan, F. Couny, L. Farr, A. Langford, P. J. Roberts, D. P. Williams, M. Banham, M. W. Mason, D. F. Murphy, E. A. M. Brown, and H. Sabert, "Slope-matched dispersion-compensating photonic crystal fibre," in Conference on Lasers and Electro-Optics, 2004 (CLEO) (Optical Society of America, 2004), pp. 1069-1070.

RSoft Photonics CAD Suite, Version 5.1.7.

E. Desurvire, Erbium-Doped Fiber Amplifiers (Wiley, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(Color online) Cross section of the designed dual concentric core PCF.

Fig. 2
Fig. 2

(Color online) Mode profile at (a) λ < λ p , (b) λ λ p , (c) λ > λ p .

Fig. 3
Fig. 3

Variation of d n / d λ with respect to the period (Λ).

Fig. 4
Fig. 4

Relationship between T and period (Λ).

Fig. 5
Fig. 5

Variation of the dispersion value and the shift observed due to (a) variation in the pitch, (b) variation of d 1, (c) variation of d 2 , and (d) variation of d 3 , while keeping the other parameters as in the given design in each case.

Fig. 6
Fig. 6

Variation of dispersion with number of air-hole rings between the inner and the outer core.

Fig. 7
Fig. 7

Effect of coupling on the effective refractive index.

Fig. 8
Fig. 8

Relationship between the dispersion value D and wavelength, and comparison of PWE and coupled mode theory results.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

β i ( ω ) β ( ω p ) + ( ω ω p ) d β i d ω | ω = ω p + ( ω ω p ) 2 2 d 2 β i d ω 2 | ω = ω p ,
B ± = 1 2 { [ β 1 ( ω ) + β 2 ( ω ) ] ± [ β 1 ( ω ) β 2 ( ω ) ] 2 + 4 κ 2 } ,
d 2 β d ω 2 | ω = ω p
d 2 β ± d ω 2 = ± 1 4 κ ( d β 1 d ω d β 2 d ω ) 2 × [ ( ω ω p ) 2 4 κ 2 ( d β 1 d ω d β 2 d ω ) 2 + 1 ] 3 / 2 .
D = λ c d 2 n eff d λ 2 = 2 π c λ 2 d 2 B d ω 2 .
D = π 2 c κ ( d n 1 d λ d n 2 d λ ) 2 × [ π 2 κ 2 ( λ λ p ) 2 λ p 2 ( d n 1 d λ d n 2 d λ ) 2 + 1 ] 3 / 2 .
D Max = π 2 c κ ( d n 1 d λ d n 2 d λ ) 2 .
Δ λ = 0.766 × 2 κ λ p π | ( d n 1 d λ d n 2 d λ ) 1 | .
| D Max Δ λ | = 0.766 × λ p c | d n 1 d λ d n 2 d λ | .
T = | d n 1 d λ d n 2 d λ | ,

Metrics