Abstract

Amplified spontaneous emission (ASE) characteristics of a red fluorescent dye, 4-(dicy-anomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB), and a green fluorescent dye, (10-(2-benzothiazolyl)-1,1,7,7-tetramethyl-2,3,6,7-tetrahydro-1H,5H,11H-[1] benzopyrano [6,7,8-ij]quinolizin-11-one) (C545T) codoped polystyrene (PS) as the active medium were studied. It was found that the performance of ASE is greatly improved due to the introduction of C545T. By optimizing the concentrations of C545T and DCJTB in PS, an ASE threshold of 0.016  mJ  pulse1, net gain of 52.71cm1, and loss of 11.7cm1 were obtained. The efficient Förster energy transfer from C545T to DCJTB was used to explain the improvement of the ASE performance in the coguest system.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Qian, J. B. Snow, H. Tzeng, and R. K. Chang, "Lasing droplets: highlighting the liquid-air interface by laser emission," Science 231, 486-488 (1986).
    [CrossRef] [PubMed]
  2. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
    [CrossRef]
  3. S. V. Frolov, Z. V. Vardeny, and K. Yoshino, "Cooperative and stimulated emission in poly(p-phenylene-vinylene) thin films and solutions," Phys. Rev. B 57, 9141-9147 (1988).
    [CrossRef]
  4. F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, "Semiconducting polymers: a new class of solid-state laser materials," Science 273, 1833-1836 (1996).
    [CrossRef]
  5. V. G. K. Fozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, "Laser action in organic semiconductor waveguide and double-heterostructure devices," Nature 389, 362-364 (1997).
    [CrossRef]
  6. N. Tessler, G. J. Denton, and H. Friend, "Lasing from conjugated-polymer microcavities," Nature 382, 695-697 (1996).
    [CrossRef]
  7. S. V. Frolov, A. Fujii, D. Chinn, Z. V. Vardeny, K. Yoshino, and R. V. Gregory, "Cylindrical microlasers and light emitting devices from conducting polymers," Appl. Phys. Lett. 72, 2811-2813 (1998).
    [CrossRef]
  8. F. Marlow, M. D. McGehee, D. Zhao, B. F. Chmlka, and G. D. Stucky, "Doped mesoporous silica fibers: a new laser material," Adv. Mater. 11, 632-636 (1999).
    [CrossRef]
  9. V. G. Kozlov, G. Parthasarath, P. E. Burrows, and S. R. Forrest, "Optically pumped blue organic semiconductor lasers," Appl. Phys. Lett. 72, 144-146 (1998).
    [CrossRef]
  10. N. Tessler, "Lasers based on semiconducting organic materials," Adv. Mater. 11, 363-370 (1999).
    [CrossRef]
  11. V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, and S. R. Forrest, "Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films," J. Appl. Phys. 84, 4096-4108 (1998).
    [CrossRef]
  12. S. Yokoyama, A. Otomo, and S. Mashiko, "Laser emission from high-gain media of dye-doped dendrimer," Appl. Phys. Lett. 80, 7-9 (2002).
    [CrossRef]
  13. M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14, 306-309 (2002).
    [CrossRef]
  14. F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoc, Z. G. Zhu, and T. M. Swager, "How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing," J. Appl. Phys. 94, 279-283 (2003).
    [CrossRef]
  15. F. P. Schafer, Dye Lasers (Springer, 1977).
  16. M. A. Baldo, M. E. Thompson, and S. R. Forrest, "High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer," Nature 403, 750-753 (2000).
    [CrossRef] [PubMed]
  17. W. Lu, B. Zhong, and D. G. Ma, "Amplified spontaneous emission and gain from optically pumped films of dye-doped polymers," Appl. Opt. 43, 5074-5078 (2004).
    [CrossRef] [PubMed]
  18. K. L. Shaklee and R. F. Leheny, "Direct determination of optical gain in semiconductor crystals," Appl. Phys. Lett. 18, 475-477 (1971).
    [CrossRef]
  19. Y. Sorek, R. Reisfeld, I. Finkelstein, and S. Ruchin, "Light amplification in a dye-doped glass planar waveguide," Appl. Phys. Lett. 66, 1169-1171 (1995).
    [CrossRef]
  20. T. Förster, Modern Quantum Chemistry. Part 2. Action of Light and Organic Molecules (Academic, 1965).

2004 (1)

2003 (1)

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoc, Z. G. Zhu, and T. M. Swager, "How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing," J. Appl. Phys. 94, 279-283 (2003).
[CrossRef]

2002 (2)

S. Yokoyama, A. Otomo, and S. Mashiko, "Laser emission from high-gain media of dye-doped dendrimer," Appl. Phys. Lett. 80, 7-9 (2002).
[CrossRef]

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14, 306-309 (2002).
[CrossRef]

2000 (1)

M. A. Baldo, M. E. Thompson, and S. R. Forrest, "High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer," Nature 403, 750-753 (2000).
[CrossRef] [PubMed]

1999 (2)

N. Tessler, "Lasers based on semiconducting organic materials," Adv. Mater. 11, 363-370 (1999).
[CrossRef]

F. Marlow, M. D. McGehee, D. Zhao, B. F. Chmlka, and G. D. Stucky, "Doped mesoporous silica fibers: a new laser material," Adv. Mater. 11, 632-636 (1999).
[CrossRef]

1998 (3)

V. G. Kozlov, G. Parthasarath, P. E. Burrows, and S. R. Forrest, "Optically pumped blue organic semiconductor lasers," Appl. Phys. Lett. 72, 144-146 (1998).
[CrossRef]

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, and S. R. Forrest, "Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films," J. Appl. Phys. 84, 4096-4108 (1998).
[CrossRef]

S. V. Frolov, A. Fujii, D. Chinn, Z. V. Vardeny, K. Yoshino, and R. V. Gregory, "Cylindrical microlasers and light emitting devices from conducting polymers," Appl. Phys. Lett. 72, 2811-2813 (1998).
[CrossRef]

1997 (1)

V. G. K. Fozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, "Laser action in organic semiconductor waveguide and double-heterostructure devices," Nature 389, 362-364 (1997).
[CrossRef]

1996 (2)

N. Tessler, G. J. Denton, and H. Friend, "Lasing from conjugated-polymer microcavities," Nature 382, 695-697 (1996).
[CrossRef]

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, "Semiconducting polymers: a new class of solid-state laser materials," Science 273, 1833-1836 (1996).
[CrossRef]

1995 (1)

Y. Sorek, R. Reisfeld, I. Finkelstein, and S. Ruchin, "Light amplification in a dye-doped glass planar waveguide," Appl. Phys. Lett. 66, 1169-1171 (1995).
[CrossRef]

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

1988 (1)

S. V. Frolov, Z. V. Vardeny, and K. Yoshino, "Cooperative and stimulated emission in poly(p-phenylene-vinylene) thin films and solutions," Phys. Rev. B 57, 9141-9147 (1988).
[CrossRef]

1986 (1)

S. Qian, J. B. Snow, H. Tzeng, and R. K. Chang, "Lasing droplets: highlighting the liquid-air interface by laser emission," Science 231, 486-488 (1986).
[CrossRef] [PubMed]

1971 (1)

K. L. Shaklee and R. F. Leheny, "Direct determination of optical gain in semiconductor crystals," Appl. Phys. Lett. 18, 475-477 (1971).
[CrossRef]

Andersson, M. R.

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, "Semiconducting polymers: a new class of solid-state laser materials," Science 273, 1833-1836 (1996).
[CrossRef]

Araoka, F.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoc, Z. G. Zhu, and T. M. Swager, "How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing," J. Appl. Phys. 94, 279-283 (2003).
[CrossRef]

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

Baldo, M.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, and S. R. Forrest, "Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films," J. Appl. Phys. 84, 4096-4108 (1998).
[CrossRef]

Baldo, M. A.

M. A. Baldo, M. E. Thompson, and S. R. Forrest, "High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer," Nature 403, 750-753 (2000).
[CrossRef] [PubMed]

Bulovic, V.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, and S. R. Forrest, "Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films," J. Appl. Phys. 84, 4096-4108 (1998).
[CrossRef]

V. G. K. Fozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, "Laser action in organic semiconductor waveguide and double-heterostructure devices," Nature 389, 362-364 (1997).
[CrossRef]

Burrows, P. E.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, and S. R. Forrest, "Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films," J. Appl. Phys. 84, 4096-4108 (1998).
[CrossRef]

V. G. Kozlov, G. Parthasarath, P. E. Burrows, and S. R. Forrest, "Optically pumped blue organic semiconductor lasers," Appl. Phys. Lett. 72, 144-146 (1998).
[CrossRef]

V. G. K. Fozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, "Laser action in organic semiconductor waveguide and double-heterostructure devices," Nature 389, 362-364 (1997).
[CrossRef]

Chang, R. K.

S. Qian, J. B. Snow, H. Tzeng, and R. K. Chang, "Lasing droplets: highlighting the liquid-air interface by laser emission," Science 231, 486-488 (1986).
[CrossRef] [PubMed]

Chinn, D.

S. V. Frolov, A. Fujii, D. Chinn, Z. V. Vardeny, K. Yoshino, and R. V. Gregory, "Cylindrical microlasers and light emitting devices from conducting polymers," Appl. Phys. Lett. 72, 2811-2813 (1998).
[CrossRef]

Chmlka, B. F.

F. Marlow, M. D. McGehee, D. Zhao, B. F. Chmlka, and G. D. Stucky, "Doped mesoporous silica fibers: a new laser material," Adv. Mater. 11, 632-636 (1999).
[CrossRef]

Denton, G. J.

N. Tessler, G. J. Denton, and H. Friend, "Lasing from conjugated-polymer microcavities," Nature 382, 695-697 (1996).
[CrossRef]

Diaz-Garcia, M. A.

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, "Semiconducting polymers: a new class of solid-state laser materials," Science 273, 1833-1836 (1996).
[CrossRef]

Finkelstein, I.

Y. Sorek, R. Reisfeld, I. Finkelstein, and S. Ruchin, "Light amplification in a dye-doped glass planar waveguide," Appl. Phys. Lett. 66, 1169-1171 (1995).
[CrossRef]

Forrest, S. R.

M. A. Baldo, M. E. Thompson, and S. R. Forrest, "High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer," Nature 403, 750-753 (2000).
[CrossRef] [PubMed]

V. G. Kozlov, G. Parthasarath, P. E. Burrows, and S. R. Forrest, "Optically pumped blue organic semiconductor lasers," Appl. Phys. Lett. 72, 144-146 (1998).
[CrossRef]

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, and S. R. Forrest, "Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films," J. Appl. Phys. 84, 4096-4108 (1998).
[CrossRef]

V. G. K. Fozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, "Laser action in organic semiconductor waveguide and double-heterostructure devices," Nature 389, 362-364 (1997).
[CrossRef]

Förster, T.

T. Förster, Modern Quantum Chemistry. Part 2. Action of Light and Organic Molecules (Academic, 1965).

Fozlov, V. G. K.

V. G. K. Fozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, "Laser action in organic semiconductor waveguide and double-heterostructure devices," Nature 389, 362-364 (1997).
[CrossRef]

Friend, H.

N. Tessler, G. J. Denton, and H. Friend, "Lasing from conjugated-polymer microcavities," Nature 382, 695-697 (1996).
[CrossRef]

Frolov, S. V.

S. V. Frolov, A. Fujii, D. Chinn, Z. V. Vardeny, K. Yoshino, and R. V. Gregory, "Cylindrical microlasers and light emitting devices from conducting polymers," Appl. Phys. Lett. 72, 2811-2813 (1998).
[CrossRef]

S. V. Frolov, Z. V. Vardeny, and K. Yoshino, "Cooperative and stimulated emission in poly(p-phenylene-vinylene) thin films and solutions," Phys. Rev. B 57, 9141-9147 (1988).
[CrossRef]

Fujii, A.

S. V. Frolov, A. Fujii, D. Chinn, Z. V. Vardeny, K. Yoshino, and R. V. Gregory, "Cylindrical microlasers and light emitting devices from conducting polymers," Appl. Phys. Lett. 72, 2811-2813 (1998).
[CrossRef]

Ganzke, D.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14, 306-309 (2002).
[CrossRef]

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

Gregory, R. V.

S. V. Frolov, A. Fujii, D. Chinn, Z. V. Vardeny, K. Yoshino, and R. V. Gregory, "Cylindrical microlasers and light emitting devices from conducting polymers," Appl. Phys. Lett. 72, 2811-2813 (1998).
[CrossRef]

Haase, W.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14, 306-309 (2002).
[CrossRef]

Heeger, A. J.

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, "Semiconducting polymers: a new class of solid-state laser materials," Science 273, 1833-1836 (1996).
[CrossRef]

Hide, F.

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, "Semiconducting polymers: a new class of solid-state laser materials," Science 273, 1833-1836 (1996).
[CrossRef]

Ishikawa, K.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoc, Z. G. Zhu, and T. M. Swager, "How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing," J. Appl. Phys. 94, 279-283 (2003).
[CrossRef]

Kasano, M.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14, 306-309 (2002).
[CrossRef]

Khalfin, V. B.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, and S. R. Forrest, "Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films," J. Appl. Phys. 84, 4096-4108 (1998).
[CrossRef]

Kozlov, V. G.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, and S. R. Forrest, "Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films," J. Appl. Phys. 84, 4096-4108 (1998).
[CrossRef]

V. G. Kozlov, G. Parthasarath, P. E. Burrows, and S. R. Forrest, "Optically pumped blue organic semiconductor lasers," Appl. Phys. Lett. 72, 144-146 (1998).
[CrossRef]

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

Leheny, R. F.

K. L. Shaklee and R. F. Leheny, "Direct determination of optical gain in semiconductor crystals," Appl. Phys. Lett. 18, 475-477 (1971).
[CrossRef]

Lu, W.

Ma, D. G.

Marlow, F.

F. Marlow, M. D. McGehee, D. Zhao, B. F. Chmlka, and G. D. Stucky, "Doped mesoporous silica fibers: a new laser material," Adv. Mater. 11, 632-636 (1999).
[CrossRef]

Mashiko, S.

S. Yokoyama, A. Otomo, and S. Mashiko, "Laser emission from high-gain media of dye-doped dendrimer," Appl. Phys. Lett. 80, 7-9 (2002).
[CrossRef]

McGehee, M. D.

F. Marlow, M. D. McGehee, D. Zhao, B. F. Chmlka, and G. D. Stucky, "Doped mesoporous silica fibers: a new laser material," Adv. Mater. 11, 632-636 (1999).
[CrossRef]

Otomo, A.

S. Yokoyama, A. Otomo, and S. Mashiko, "Laser emission from high-gain media of dye-doped dendrimer," Appl. Phys. Lett. 80, 7-9 (2002).
[CrossRef]

Ozaki, M.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14, 306-309 (2002).
[CrossRef]

Parthasarath, G.

V. G. Kozlov, G. Parthasarath, P. E. Burrows, and S. R. Forrest, "Optically pumped blue organic semiconductor lasers," Appl. Phys. Lett. 72, 144-146 (1998).
[CrossRef]

Parthasarathy, G.

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, and S. R. Forrest, "Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films," J. Appl. Phys. 84, 4096-4108 (1998).
[CrossRef]

Pei, Q.

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, "Semiconducting polymers: a new class of solid-state laser materials," Science 273, 1833-1836 (1996).
[CrossRef]

Qian, S.

S. Qian, J. B. Snow, H. Tzeng, and R. K. Chang, "Lasing droplets: highlighting the liquid-air interface by laser emission," Science 231, 486-488 (1986).
[CrossRef] [PubMed]

Reisfeld, R.

Y. Sorek, R. Reisfeld, I. Finkelstein, and S. Ruchin, "Light amplification in a dye-doped glass planar waveguide," Appl. Phys. Lett. 66, 1169-1171 (1995).
[CrossRef]

Ruchin, S.

Y. Sorek, R. Reisfeld, I. Finkelstein, and S. Ruchin, "Light amplification in a dye-doped glass planar waveguide," Appl. Phys. Lett. 66, 1169-1171 (1995).
[CrossRef]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

Schafer, F. P.

F. P. Schafer, Dye Lasers (Springer, 1977).

Schwartz, B. J.

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, "Semiconducting polymers: a new class of solid-state laser materials," Science 273, 1833-1836 (1996).
[CrossRef]

Shaklee, K. L.

K. L. Shaklee and R. F. Leheny, "Direct determination of optical gain in semiconductor crystals," Appl. Phys. Lett. 18, 475-477 (1971).
[CrossRef]

Shin, K.-C.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoc, Z. G. Zhu, and T. M. Swager, "How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing," J. Appl. Phys. 94, 279-283 (2003).
[CrossRef]

Snow, J. B.

S. Qian, J. B. Snow, H. Tzeng, and R. K. Chang, "Lasing droplets: highlighting the liquid-air interface by laser emission," Science 231, 486-488 (1986).
[CrossRef] [PubMed]

Sorek, Y.

Y. Sorek, R. Reisfeld, I. Finkelstein, and S. Ruchin, "Light amplification in a dye-doped glass planar waveguide," Appl. Phys. Lett. 66, 1169-1171 (1995).
[CrossRef]

Stucky, G. D.

F. Marlow, M. D. McGehee, D. Zhao, B. F. Chmlka, and G. D. Stucky, "Doped mesoporous silica fibers: a new laser material," Adv. Mater. 11, 632-636 (1999).
[CrossRef]

Swager, T. M.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoc, Z. G. Zhu, and T. M. Swager, "How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing," J. Appl. Phys. 94, 279-283 (2003).
[CrossRef]

Takanishi, Y.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoc, Z. G. Zhu, and T. M. Swager, "How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing," J. Appl. Phys. 94, 279-283 (2003).
[CrossRef]

Takezoc, H.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoc, Z. G. Zhu, and T. M. Swager, "How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing," J. Appl. Phys. 94, 279-283 (2003).
[CrossRef]

Tessler, N.

N. Tessler, "Lasers based on semiconducting organic materials," Adv. Mater. 11, 363-370 (1999).
[CrossRef]

N. Tessler, G. J. Denton, and H. Friend, "Lasing from conjugated-polymer microcavities," Nature 382, 695-697 (1996).
[CrossRef]

Thompson, M. E.

M. A. Baldo, M. E. Thompson, and S. R. Forrest, "High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer," Nature 403, 750-753 (2000).
[CrossRef] [PubMed]

Tzeng, H.

S. Qian, J. B. Snow, H. Tzeng, and R. K. Chang, "Lasing droplets: highlighting the liquid-air interface by laser emission," Science 231, 486-488 (1986).
[CrossRef] [PubMed]

Vardeny, Z. V.

S. V. Frolov, A. Fujii, D. Chinn, Z. V. Vardeny, K. Yoshino, and R. V. Gregory, "Cylindrical microlasers and light emitting devices from conducting polymers," Appl. Phys. Lett. 72, 2811-2813 (1998).
[CrossRef]

S. V. Frolov, Z. V. Vardeny, and K. Yoshino, "Cooperative and stimulated emission in poly(p-phenylene-vinylene) thin films and solutions," Phys. Rev. B 57, 9141-9147 (1988).
[CrossRef]

Yokoyama, S.

S. Yokoyama, A. Otomo, and S. Mashiko, "Laser emission from high-gain media of dye-doped dendrimer," Appl. Phys. Lett. 80, 7-9 (2002).
[CrossRef]

Yoshino, K.

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14, 306-309 (2002).
[CrossRef]

S. V. Frolov, A. Fujii, D. Chinn, Z. V. Vardeny, K. Yoshino, and R. V. Gregory, "Cylindrical microlasers and light emitting devices from conducting polymers," Appl. Phys. Lett. 72, 2811-2813 (1998).
[CrossRef]

S. V. Frolov, Z. V. Vardeny, and K. Yoshino, "Cooperative and stimulated emission in poly(p-phenylene-vinylene) thin films and solutions," Phys. Rev. B 57, 9141-9147 (1988).
[CrossRef]

Zhao, D.

F. Marlow, M. D. McGehee, D. Zhao, B. F. Chmlka, and G. D. Stucky, "Doped mesoporous silica fibers: a new laser material," Adv. Mater. 11, 632-636 (1999).
[CrossRef]

Zhong, B.

Zhu, Z. G.

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoc, Z. G. Zhu, and T. M. Swager, "How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing," J. Appl. Phys. 94, 279-283 (2003).
[CrossRef]

Adv. Mater. (3)

F. Marlow, M. D. McGehee, D. Zhao, B. F. Chmlka, and G. D. Stucky, "Doped mesoporous silica fibers: a new laser material," Adv. Mater. 11, 632-636 (1999).
[CrossRef]

N. Tessler, "Lasers based on semiconducting organic materials," Adv. Mater. 11, 363-370 (1999).
[CrossRef]

M. Ozaki, M. Kasano, D. Ganzke, W. Haase, and K. Yoshino, "Mirrorless lasing in a dye-doped ferroelectric liquid crystal," Adv. Mater. 14, 306-309 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

K. L. Shaklee and R. F. Leheny, "Direct determination of optical gain in semiconductor crystals," Appl. Phys. Lett. 18, 475-477 (1971).
[CrossRef]

Y. Sorek, R. Reisfeld, I. Finkelstein, and S. Ruchin, "Light amplification in a dye-doped glass planar waveguide," Appl. Phys. Lett. 66, 1169-1171 (1995).
[CrossRef]

V. G. Kozlov, G. Parthasarath, P. E. Burrows, and S. R. Forrest, "Optically pumped blue organic semiconductor lasers," Appl. Phys. Lett. 72, 144-146 (1998).
[CrossRef]

S. V. Frolov, A. Fujii, D. Chinn, Z. V. Vardeny, K. Yoshino, and R. V. Gregory, "Cylindrical microlasers and light emitting devices from conducting polymers," Appl. Phys. Lett. 72, 2811-2813 (1998).
[CrossRef]

S. Yokoyama, A. Otomo, and S. Mashiko, "Laser emission from high-gain media of dye-doped dendrimer," Appl. Phys. Lett. 80, 7-9 (2002).
[CrossRef]

J. Appl. Phys. (2)

F. Araoka, K.-C. Shin, Y. Takanishi, K. Ishikawa, H. Takezoc, Z. G. Zhu, and T. M. Swager, "How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing," J. Appl. Phys. 94, 279-283 (2003).
[CrossRef]

V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, and S. R. Forrest, "Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films," J. Appl. Phys. 84, 4096-4108 (1998).
[CrossRef]

Nature (4)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature 368, 436-438 (1994).
[CrossRef]

V. G. K. Fozlov, V. Bulovic, P. E. Burrows, and S. R. Forrest, "Laser action in organic semiconductor waveguide and double-heterostructure devices," Nature 389, 362-364 (1997).
[CrossRef]

N. Tessler, G. J. Denton, and H. Friend, "Lasing from conjugated-polymer microcavities," Nature 382, 695-697 (1996).
[CrossRef]

M. A. Baldo, M. E. Thompson, and S. R. Forrest, "High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer," Nature 403, 750-753 (2000).
[CrossRef] [PubMed]

Phys. Rev. B (1)

S. V. Frolov, Z. V. Vardeny, and K. Yoshino, "Cooperative and stimulated emission in poly(p-phenylene-vinylene) thin films and solutions," Phys. Rev. B 57, 9141-9147 (1988).
[CrossRef]

Science (2)

F. Hide, M. A. Diaz-Garcia, B. J. Schwartz, M. R. Andersson, Q. Pei, and A. J. Heeger, "Semiconducting polymers: a new class of solid-state laser materials," Science 273, 1833-1836 (1996).
[CrossRef]

S. Qian, J. B. Snow, H. Tzeng, and R. K. Chang, "Lasing droplets: highlighting the liquid-air interface by laser emission," Science 231, 486-488 (1986).
[CrossRef] [PubMed]

Other (2)

F. P. Schafer, Dye Lasers (Springer, 1977).

T. Förster, Modern Quantum Chemistry. Part 2. Action of Light and Organic Molecules (Academic, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Emission spectra of C545T:DCJTB-PS system pumped by optically pulsed laser at below (dashed curve) and above (solid curve) lasing threshold. The below threshold spectrum was multiplied by a factor of 10. The inset shows the chemical structure formulas of C545T and DCJTB.

Fig. 2
Fig. 2

Output emission intensity integrated over all wavelengths as a function of pump intensity for DCJTB-PS film (circles) and C545T:DCJTB-PS film (squares), separately.

Fig. 3
Fig. 3

Dependence of the emission intensity at peak wavelength on the excitation length at indicated pump intensities for DCJTB-PS film and C545T:DCJTB-PS film, separately. Pumped intensity is 0.08   mJ   pulse 1 .

Fig. 4
Fig. 4

Intensity of light emitted at λ peak = 640   nm from the edge of a waveguide as a function of the distance between the pump stripe and the edge of the DCJTB-PS film and the C545T:DCJTB-PS film, separately.

Fig. 5
Fig. 5

Photoluminescence spectrum of C545T and absorption spectra of DCJTB.

Fig. 6
Fig. 6

Absorption and PL spectra of C545T:DCJTB-PS film.

Tables (1)

Tables Icon

Table 1 Dependence of Threshold, Gain, and Loss on Doped Concentrations

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d I d x = A P 0 + g I x ,
I = A ( λ ) I p g ( λ ) ( e g ( λ ) L 1 ) ,
I = I 0 e ( α x ) ,
K = 1 τ H ( R 0 R ) 6 ,
R 0 = [ 3 4 π c 4 ϖ 4 n 4 F H ( ϖ ) σ D ( ϖ ) d ϖ ] 1 / 6 ,

Metrics